Белковый обмен. Белковый обмен и питание Белковый обмен в организме также

  • 20.03.2022

Мы признаем важность конфиденциальности информации. В этом документе описывается, какую личную информацию мы получаем и собираем, когда Вы пользуетесь сайтом edu.ogulov.com. Мы надеемся, что эти сведения помогут Вам принимать осознанные решения в отношении предоставляемой нам личной информации.

Электронная почта

Адрес электронной почты, указываемый Вами при заполнении форм на сайте, не показывается другим посетителям сайта. Мы можем сохранять сообщения, полученные по электронной почте и другие письма, оправленные пользователями, чтобы обрабатывать вопросы пользователей, отвечать на запросы и совершенствовать наши службы.

Номер телефона

Номер телефона, указываемый Вами при заполнении форм на сайте, не показывается другим посетителям сайта. Номер телефона используется нашими менеджерами только для связи с Вами.

Цели сбора и обработки персональной информации пользователей

.

На нашем сайте, посвященном интернет-маркетингу, присутствует возможность заполнять формы. Ваше добровольное согласие на получение от нас обратной связи после отправки любой формы на сайте подтверждается путем ввода Вашего имени, E-mail и номера телефона в форму. Имя используется для личного обращения к Вам, E-mail — для отправки Вам писем, номер телефона используется нашими менеджерами только для связи с Вами. Пользователь предоставляет свои данные добровольно, после чего ему высылается письмо с обратной связью или поступает звонок от менеджера компании.

Условия обработки и её передачи третьим лицам

Ваше имя, E-mail и номер телефона никогда, ни при каких условиях не будут переданы третьим лицам, исключая случаи, которые связаны с исполнением законодательства.

Протоколирование

При каждом посещении сайта наши серверы автоматически записывают информацию, которую Ваш браузер передает при посещении веб-страниц. Как правило эта информация включает запрашиваемую веб-страницу, IP-адрес компьютера, тип браузера, языковые настройки браузера, дату и время запроса, а также один или несколько файлов cookie, которые позволяют точно идентифицировать Ваш браузер.

Куки (Cookie)

На сайте edu.ogulov.com используются куки (Cookies), происходит сбор данных о посетителях с помощью сервисов Яндекс.Метрика. Эти данные служат для сбора информации о действиях посетителей на сайте, для улучшения качества его содержания и возможностей. В любое время Вы можете изменить параметры в настройках Вашего браузера таким образом, чтобы браузер перестал сохранять все файлы cookie, а так же оповещал их об отправке. При этом следует учесть, что в этом случае некоторые сервисы и функции могут перестать работать.

Изменение Политики конфиденциальности

На этой странице Вы сможете узнать о любых изменениях данной политики конфиденциальности. В особых случаях Вам будет выслана информация на Ваш E-mail. Вы можете задать любые вопросы, написав на наш E-mail:

Обмен белков - это совокупность пластических и энергетиче­ских процессов превращения белков в организме, включая обмен амино­кислот и продуктов их распада. Белки составляют основу всех клеточных структур и являются материальными носителями жизни. Биосинтез белков определяет рост, развитие и самообновление всех структурных элементов в организме и тем самым их функциональную надежность. Суточная по­требность в белках (белковый оптимум) для взрослого человека в среднем составляет 100-120 г (при трате энергии 3000 ккал/сутки). В распоряжении организма должны быть все аминокислоты (20) в определенном соотно­шении и количестве, иначе белок не может быть синтезирован. Многие составляющие белок аминокислоты (8 - валин, лейцин, изолейцин, лизин, метионин, треонин, фенилаланин, триптофан) не могут синтезироваться в организме и должны поступать с пищей. Это так называемые незаменимые аминокислоты. Другие аминокислоты, которые могут быть синтезированы в организме, называются заменимыми (их 12: гликокол, аланин, глутаминовая кислота, пролин, оксипролин, серии, тирозин, цистеин, аргинин, гистидин и др.). Исходя из этого, белки делят на биологически полноцен­ные (с полным набором всех восьми незаменимых аминокислот) и непол­ноценные (при отсутствии одной или нескольких незаменимых аминокис­лот).

Основными этапами обмена белков являются:

1) ферментативное расщепление белков пищи до аминокислот и вса­сывание последних;

2) превращение аминокислот;

3) биосинтез белков;

4) расщепление белков;

5) образование конечных продуктов распада аминокислот.

Всосавшись в кровеносные капилляры ворсинок слизистой оболочки

тонкого кишечника, аминокислоты по воротной вене поступают в печень, где они либо немедленно используются, либо задерживаются в качестве небольшого резерва. Часть аминокислот остается в крови и попадает в другие клетки тела, где они включаются в состав новых белков. Период обновления общего белка в организме составляет у человека 80 дней. Если пища содержит больше аминокислот, чем это не­обходимо для синтеза клеточных белков, ферменты печени отщепляют от них аминогруппы NH 2 , т.е. производят дезаминирование. Другие ферменты, соединяя отщепленные аминогруппы с СО 2 , образуют из них мочеви­ну, которая переносится с кровью в почки и выделяется с мочой. Углерод­ные цепи некоторых аминокислот, называемых «глюкогенными», могут превращаться в глюкозу или гликоген; углеродные цепи других аминокис­лот - "кетогенных" дают кетоновые тела. Белки как таковые практически не откладываются в депо. Поэтому белки, которые организм расходует после истощения запаса углеводов и жиров, - это не резервные белки, а ферменты и структурные белки самих клеток.


Нарушения обмена белков в организме могут быть количественные и качественные. О количественных изменениях белкового обмена судят по азотистому балансу , т.е. по соотношению количества азота, поступивше­го в организм с пищей и выделенного из него. В норме у взрослого чело­века при адекватном питании, как правило, количество введенного в орга­низм азота равно количеству азота, выведенного из организма (азотистое равновесие). В случаях, когда поступление азота превышает его выделе­ние, говорят о положительном азотистом балансе. При этом происходит задержка азота в организме. Наблюдается в период роста организма, во время беременности, при выздоровлении после тяжелых заболеваний. Ко­гда количество выведенного из организма азота превышает количество поступившего азота, говорят об отрицательном азотистом балансе. Он от­мечается при значительном снижении содержания белка в пище (белковом голодании).

Качественные изменения белкового обмена приводят к изменениям в структуре клеток и тканей - белковым дистрофиям - диспротеинозам. Одни из них проявляются в изменениях белка в клетках - паренхиматоз­ные (клеточные) дистрофии, другие - в изменениях внеклеточного белка тканей - мезенхимальные (внеклеточные) дистрофии.

Обмен веществ и энергии - это совокупность превращений веществ и энергии в живых телах и обмен веществ и энергией между организмом и окружающей средой, направленный на воспроизведение живой структуры. Это основное свойство которое отличает живое от неживого. Все организмы обмениваются с окружающей средой веществом, энергией, информацией.

В зависимости от способа получения углеводов делятся на:

l Аутотрофные - используют в качестве источника углевода углекислый газ, из которого они способны синтезировать органические соединения

l Гетероторофные - питающиеся за счет других. Живут за счет получения углевода в виде сложных органических соединений, например глюкозы.

По форме потребляемой энергии:

l Фототрофные - используют энергию солнечного света. Сине-зеленые водоросли, зеленые клетки растений, фотоситещирующие бактерии.

l Хемотрофные - клетки, которые живут за счет химической энергии, освобождающейся в ходе окислительо-востановительных процессов.

Принято выделять промежуточный обмен - превращение веществ и энергии в организме с момента поступления переваренных веществ в кровь и до момента выделения конечных продуктов. Он складывается из 2х процессов - катаболизма - диссимиляции и анаболизма - ассимиляция.

Катаболизм - расщепление крупных молекул окислительным путем, процесс идет с освобождением энергии, заключенной в химических связях. Эта энергия запасается в АТФ.

Анаболизм - ферментативный синтез из более простых соединений крупномолекулярных клеточных элементов. Происходит образование полисахаридов, белков, нуклеиновых кислот, липидов. Процессы анаболизма идут с поглощением энергии.

Процессы анаболизма и катаболизма тесно взаимосвязаны и протекаю через определенные стадии.

Процессы катаболизма.

1-ая стадия - крупные органические молекулы распадаются на структурные специфические блоки. Полисахариды распадаются до пептоз и гексоз, белки до аминокислот, жиры до глицерина и ирных кислот, холестерина. Нуклеиновые кислоты до нуклеотидов и нуклеозтдов.

2-ая стадия катаболизма - характеризуется образованием более простых молекул, их число уменьшается и существенным моментом является образование продуктов, которые являются общими для обмена разных веществ. Это узловые станции, которые соединяют разные пути обмена. Фумарат, сукцинат, пируват, ацетил-КоА, альфа-кетоглутарат.

3-я стадия - эти соединения вступают в процессы терминального окисления, котоыре осуществляются в цикле трикарбоновых кислот. Происходит из окончательный распад до углекислого газа и воды.

Процессы анаболизма протекают тоже в три стадии.

1-ая стадия анаболизма может рассматриваться как третья стадия катаболизма. Исходные продукты синтеза белка - альфа-кетокислоты. Они также нужны для образования аминокислот, т.к. на следующей стадии к альфа-кетокислотам присоединяются аминогруппы. Что происходит в реакциях аминирования и трансаминирования - способствуют превращению альфа-кетокисот в аминокислоты. Дальше синтезируются полипептидные цепи белка.

Обмен веществ имеет 3 ключевых значения:

  1. Пластическое - синтез органических соединений - белков, углеводов, липидов, клеточных компонентов.
  2. Энергетическое значение - происходит извлечение энергии из окружающей среды и преобразуется в энергию макроэргических соединений.
  3. Обезвреживающее значение. Обезвреживаются продукты распада веществ и осуществляется их выведение. Обмен веществ - как химическое производство, а все хим. Заводы образуют побочные продукты, которые загрязняют окружающую среду.

Методы изучения делятся на:

l Обмена веществ - основной метод - метод составления баланса. По соотношению веществ, поступивших в организм с пищей с продуктами и продуктами выделения. Содержание питательных веществ могут быть определены по таблицам - сколько белка, жира и углевода. Или содержание питательных веществ может быть определено экспериментально. Белок может быть определено по количеству полученного азота. Содержание жира - извлекают жир эфиром, а углеводы определяют колориметрическим способом. Конечные продукты распада - углекислый газ и вода, а белки дают содержащие продукты, но они выводятся из организма с мочой.

l Обмена энергии

Обмен белка.

Белки имеют особое значение для организма. Они обладают двумя функциями:

  1. Пластическая - входят в состав всех веществ,
  2. Энергетическая - 1 г белка дает 4,0 ккал (16,7 кДж), 1 ккал = 4,1185 кДж.

Нормы суточного потребления отличаются в разных странах: 1-1,5 г/кг в России, 0,5-0,8 г/кг - США. Для детей - от 1 до 4 лет - 4 г/кг, так как ребенок растет.

Организм получает белок из двух источников:

  • Экзогенный белок - белок пищи - 75-120 г/сутки
  • Эндогенный белок - секреторные белки, белки кишечного эпителия - 30 - 40 г/сутки.

Эти источники обеспечивают поступление белка в пищеварительный тракт, где будет происходит его расщепление до аминокислот. Распад аминокислот происходит в печени - дезаминирование, трансаминирование, когда аминокислота теряет группу и превращается в аммиак, аммоний или мочевину, и эти продукты подлежат выведению из организма.

Особенностью белка является то, что он построен из 20 аминокислот. Аминокислоты могут быть заменимыми и незаменимыми(не могут синтезироваться в организма - триптофан, лизин, лейцин, валин, изолейцин, треонин, метионин, фенилаланин, гистидин и аргинин). Полноценные белки - содержат незаменимые аминокислоты. Неполноценные белки - содержат не все незаменимые аминокислоты.

Биологическая ценность белка - под ней понимается то количество белка, специфическое для данного организма, которое образуется из 100 г поступившего белка с пищей. Молоко - 100, кукуруза - 30, пшеничного хлеба — 40.

Аминокислоты, которые образуются в кишечнике в ходе расщепления белка подвергаются процессам всасывания, причем для аминокислот существуют специфические натрий зависимые переносчики. Такой комплекс проходит через мембрану. Аминокислоты поступят в кровь, а натрий будет в натрий - калиевой АТФазе (насоса), который поддерживает градиент для натрия. Такой транспорт называется вторично активным. L-изомеры аминокислот проникают легче, чем D. На транспорт аминокислот влияет строение молекулы. Легко проходит аргинин, метионин, лейцин. Фенилаланин проникает медленней. Очень плохо всасывается аланин и серин. Одни аминокислоты могут способствовать прохождению других. Например глицин и метионин облегчают поход друг другу.

Распад осуществляется в печени. Основной путь распада - дезаминирование, в ходе которого образуются без азотистый остаток и образуется азотистые соединения. Без азотистые осадки могут превращаться в углеводы и жиры и затем использовать в ходе получения энергии. Азотистые соединения удаляются с мочой. Второй путь - это трансаминирование. Идет с участием трансаминаз. При повреждении клеток трансаминазы могут проходить в плазму крови. При гепатитах, инфарктах увеличивается содержание трансаминаз в крови. Это диагностический признак.

Метод азотистого баланса.

Отложить азот про запас не возможно. В крови запас аминокислот составляет 35-65мг %. Существует понятие минимума (1 г на 1кг веса). Азот в белке содержится в строго определенных соотношения - 1 г азота содержится в 6,25 г белка. Для определения азотистого баланса нужно знать поступление белка с пищей. Часть белка пройдет через ЖКТ транзитом. Нужно определить азот кала. По разнице азота пищи и азота кала, мы определим азот усвоенного белка, т.е. тот, который поступил в кровь и пошел в реакции обмена. Распавшийся белок оценивается по азоту мочи. Азотистый баланс оценивается между усвоенным и распавшимся:

Состояние азотистого баланса:

l А-B=C - азотистое равновесие, у здорового взрослого человека с достаточным потреблением белка с пищей. Чтобы поддержать надо употреблять 1 г белка на кг веса. Но это равновесие может быть не устойчиво - стресс, физическая работа, тяжелые заболевания.

l Белковый оптимум - 1,5 кг тела. Из этого нужно строить свой рацион

l А-B>C - положительный азотистый баланс. Это состояние характерно у растущего организма. Задержка белка в организме, и он расходуется на процессы роста. Это может быть состояние при тренировках - нарастание массы мышц. Процесс восстановления организма после заболевания, при беременности.

l A-B<С. Распад преобладает над усвоением - отрицательный азотистый баланс - в старческом возрасте, пр белковом голодании или употреблении не полноценных белков и при тяжелых заболеваниях, сопровождающихся распадом ткани.

Углеводный обмен.

Человек получает углеводы в трёх формах. Это:

  1. Дисахарид сахарозы
  2. Дисахарид лактозы
  3. Полисахариды
    • Амилоза с неразветвленной цепью
    • Аминопептин - с разветвленной цепью
    • Целлюлоза - с растительными продуктами. Но нет фермента для ее расщепления

Суточное потребление углеводов составляет от 250 до 800, 7 г.кг.сутки. Энергетическая ценность глюкозы составляет 1г., глюкозы - 3,75 ккал. или 15,7 кДж.

В пищеварительном тракте углеводы распадаются до моносахаридов, которые подвергаются всасыванию. Начальное расщепление осуществляется амилазой слюны. Основное переваривание в тонкой кишке. Поджелудочная амилаза расщепляет углеводы до олигосахаридов. Далее расщепляются до моносахаридов углеводистыми ферментами в тонкой кишке. Здесь имеются 4 фермента - мальтаза, изомальтаза, лактаза и сахараза.

Конечные продукты расщепления - фруктоза, глюкоза и галактоза. Галактоза и фруктоза отличаются от глюкозы положением групп H и OH. Всасывание - вторичный натрий зависимый транспорт. Переносчики для углеводов присоединяют глюкозу и 2 иона натрия и такой комплекс проходит в клетку за счет разницы концентраций и зарядов натрия. Фруктоза проникает путем облегченной диффузии. Причем внутри клеток эпителия фруктоза превращается в глюкозу и молочную кислоту. Это поддерживает градиент для преодоления глюкозы. Кишечник может всосать до 5 кг углеводов в день. Если нарушается процесс всасывания, то изменяется осмотическое давление(повышается), вода выходит в просвет кишечника - понос. Углеводы подвергаются брожению с образованием газов. Водород, метан и углекислый газ. Они являются раздражающими для слизистой оболочки. На мембране кишечного эпителия - недостаток лактазы, который расщепляет молочный сахар. Очень тяжелое состояние для детей. Если нет лактазы - проблемы с кишечником.

Пути использования моносахаридов в организме .

Они поступают в кровь и образуют сахар крови с нормальным содержанием 3,3-6,1 ммоль/л или 70-120 мг %. Далее поступают в печень и откладываются в виде гликогена. Могут превращаться в гликоген мышц и использоваться при мышечном сокращении. Углеводы могут превращаться в жиры и откладываться в жировых депо, что используется для вскармливания сельскохозяйственнных животных. Углеводы могут превращаться в аминокислоты при присоединение NH2. Они служат энергетическим источником. Для синтеза гликолипидов, гликопротеинов. Поддержание уровня сахара в крови происходит за счет гормонов поджелудочной железы - инсулин (способствует отложению гликогенов), глюкагон - появляется при снижении уровня глюкозы в крови, способствует распаду гликогена в печени. Содержание сахара увеличивает адреналин - увеличивает распад гликогена. Глюкокортикоиды - стимулируют процессы глюконеогенеза. Тироксин(щитовидная железа) Усиливает всасывание глюкозы в кишечнике.

Жировой обмен.

Мужчина -12-18 %, свыше 20% - ожирение, женщина 18-24% , свыше 25% - ожирение.

Суточное потребление жира - от 25 до 160 г или 1 г жира на 1 кг веса. Энергетическая ценность 1 г жира - 9,0 ккал или 37,7 кДж.

Этапы превращения жиров в организме.

  1. Эмульгирование(образование капель размером 0,5-1 мкм)
  2. Расщепление липазами до глицерина и жирных кислот
  3. Образование мицелл(4-6 нм в диаметре) которые содержат - глицерин, жирные кислоты, желчные соли, лецитин, холестерин, жирорастворимые витамины А,Д,Е,К
  4. Всасывание мицелл в энтероциты.
  5. Далее идет образование хиломикронов (до100 нм в диаметре), которые содержат - триглицерилы - 86%, холестерин - 3%, фосфолипиды - 9%, протеины -2 %, витамины.
  6. Извлечение из крови хиломикронов при участии фермента липопротеиновой липазы и кофермента гепарина.
  7. Распад эногенных жиров в жировых клетках происходит под влиянием гормон-зависимой липазы, которая активируется - адреналином, норадреналином, АКТГ, тиреотропным, лютеотропным гормонными, вазопрессином и серотонином.
  8. тормозится - инсулином, простагланином Е.

Комплексы с липопротеинами низкой плотности очень легко проникают через стенку кровеносных сосудов, что приводит к атеросклерозу. Липопротеиы высокой плотности - там развитие атеросклероза меньше. Липопротеины высокой плотности увеличиваются при:

  • регулярной физической нагрузке
  • у тех,кто не курит.

Вещества, образующиеся из ненасыщенных жирных кислот - арахидоновой, линолевой и линоленовой, содержат в своем составе 20 атомов углевода:

  1. Простогландины
  2. Лейкотриены
  3. Простациклеин
  4. Тромбоксан А2 и Б2
  5. Липоксины А и Б.

Лейкотриены - это медиаторы аллергических и воспалительных реакций. Они вызывают сужение бронхов, сужение артериолл, повышение проницаемости сосудов, выход нейтрофилов и эозинофилов в очаг воспаления.

Липоксин А - расширяет микроциркуляторные сосуды, оба липоксина А и Б тормозят цитотоксический эффект Т-киллеров.

Энергетический обмен.

Все проявления биологических процессов связаны с превращением Е. Изучение энергетических процессов даёт нам представление о ходе самого процесса. Получая энергию с пищевыми продуктами, мы получаем макроэргическую энергию (механическая, электрическая, тепловая и другая энергия). За счет этой Е мы способны совершать внешнюю работу, на которую тратиться 20% энергии, а остальное - это тканевая энергия. Соотношение между поступившей и выделившейся энергией называется энергетическим балансом, который находится в состоянии равновесия. Запасание Е в организме не превышает 1 % энергии. Изучение энергетического баланса имеет теоретическое(приложимость закона сохранения Е и к живым системам) и практическое значение (даёт возможность для научного обоснования правильного составления рациона).

Энергетическая ценность питательных веществ определяется колориметрическим методом, т.е. сжигание веществ в колориметре. Были определены колориметрические коэффициенты:

Белки - 5,7 ккал/г

Углеводы - 3,75 ккал/г

Жиры - 9,0 ккал/г.

В организме происходит распад окислительным путем, но до углекислого газа и воды (при поступлении в организм).

Правило Гесса (1836) :

Тепловой эффект химического процесса, развивающийся через ряд последовательных реакций, не зависит от промежуточных стадий, а определяется лишь начальным и конечным состоянием веществ, участвующих в реакции.

В организме 1 г белка дает 4 ккал/г. Зная количество граммов поглощенных веществ мы можем высчитать энергетический баланс. Для определения расхода Е были предложен метод прямой колориметрии, основанный на определении количества всей тепловой энергии. Были сконструированы колориметры и для человека. Это специальные камеры, в которые можно поместить человека и исследовать выделение энергии.

Метод прямой колориметрии обладает высокой точностью. Этот метод довольно трудоемкий. Этот метод не позволяет исследовать энергетический обмен при разных видах труда. В практическом отношении изучение энергии используют метод непрямой колориметрии . Этот метод основан на определении энергозатрат организмом косвенно по количеству потребленного кислорода и выделенного углекислого газа.

Реакция окисления глюкозы:

C6H12O6 + 6O2= 6CO2 + 6H2O + E,

E=2827 кДж, или 675 ккал/моль, 1 моль глюкозы = 180 г. При окислении 1 г глюкозы будет выделяться 15,7 кДж, или, 3,75 ккал/г.

Чтобы определить, что подвергается окислению, было предложено определение дыхательного коэффициента - отношение выделившегося углекислого газа к количеству поглощенного кислорода. Дыхательный коэффициент для углеводов будет равен 1.

Окисление жира - трипальмитина:

2С51H98O6 + 145 O2= 102 CO2 + 98 H2O,

Следовательно, ДК=102 CO2:145O2=0,7

В случае окисления глюкозы - кислород для воды получается из внутримолекулярного кислорода глюкозы и получаемый кислород идет на CO2. В жирах внутримолекулярного кислорода мало, поэтому он идет не только на CO2, но и на воду.

Определение дыхательного коэффициента дает нам установить, какие продукты подвергаются окислению.

Для метода непрямой колориметрии используется еще один показатель - калорический эквивалент кислорода - количество выделившейся энергии в окислительном процессе при поглощении одного литра кислорода.

1 моль O2 = 22,4 л, а 6 молей O2 занимают объем 134,4 л

КЭ (О2) = 2827 кДж: 134,4л=21,2 кДж/л

Калорический эквивалент кислорода будет зависеть от дыхательного коэффициента.

При уменьшении дыхательного коэффициента на 0,01 калорический эквивалент кислорода уменьшается на 12 малых калорий.

E= x V(O2) в л/ мин.,

где n - число сотых, на которое отличается дыхательный коэффициент.. При изменении ДК на 1 сотую КЭ O2 изменяется на 12 кал. Метод непрямой колориметрии дает подойти к изучению энергии в организме.

Дыхательный коэффициент иногда может быть больше 1. Это происходит в восстановительный период, после совершения мышечной работы. Это связано с тем, что в мышцах, во время нагрузки происходит накопление молочной кислоты и после прекращения нагрузки, молочная кислота начинает вытеснять углекислый газ из бикарбоната. Количество выделившегося углекислого газа может оказаться больше, чем поглощено кислорода.

Еще дыхательный коэффициент может быть больше 1, при переходе углеводов в жиры. Жиры требуют меньшего количества кислорода, для построения молекул. Часть кислорода используется в процессах окисления.

При изучении обмена энергии выделяют основной и общий обмен энергии .

Под основным понимается - величина энергетического обмена для бодрствующего организма в условиях физического и эмоционального покоя, при предельно возможном ограничении функций организма (момент пробуждения). Энергетические затраты в этом состоянии связаны с поддержанием окислительных процессов в клетке. Энергия расходуется на деятельность постоянно работающих органов - почки, печень, сердце, дыхательные мышцы, поддержание минимального тонуса мускулатуры. Исследуют основной обмен при соблюдении следующих условий: положение лежа, мышечный покой, расслабленная поза, при исключении эмоциональных раздражителей, состояние натощак (через 12 часов), при температуре комфорта - 18-20 градусов, при бодрствовании. При таких условиях для среднего мужчины - 1300-1600 ккал. У женщин на 10% меньше, т.е. 1200-1400. Для сравнения основной обмен определяют на кг веса тела - на 1 кг веса тела расходуется 1 ккал за 1 час.

При сопоставлении величины основного обмена у животных, оказалось что чем меньше масса, тем больше будет основной обмен. У мыши - 17 ккал на 1 кг за час. У лошади - 0,5 ккал на 1 кг веса тела. Если расчет производить на 1 поверхности, то величина примерно одинаковая.

Рубнер сформулировал закон поверхности , согласно которому величина основного обмена зависит от соотношения поверхности и массы тела. У человека на 1 кв.м. поверхности выделяется 1000 ккал.

Этот закон не абсолютен, т.е. при одинаковой S поверхности, величина основного обмена у людей может быть различна. Интенсивность обмена энергии определяется не только теплоотдачей, но и теплопродукцией. Теплопродукция зависит от состояния нервной и эндокринной системы. На величину основного обмена влияет возраст. У детей основной обмен выше, чем у взрослых. Это связано с большей интенсивностью окислительных процессов и с ростом организма. Величина основного обмена начинает возрастать со второй половины первого дня жизни и достигает максимальной величины к полутора годам. У новорожденного - величина основного обмена - 50-54 ккал на кг за сутки. В полтора года эта величина 55-60 ккал на кг за сутки. Половые различия - начинают проявляться со второй половины первого года жизни, когда основной обмен у мальчиков становится больше, чем у девочек. Повышение температуры тела на 1 градус увеличивают величину основного обмена на 10%.

Состояние нервной и эндокринной системы - увеличивают гормоны щитовидной железы, гормон роста и адреналин. Систематическое занятие спортом повышает основной обмен, а прекращение резко снижает. Люди, не употребляющие мясо - вегетарианцы, имеют основной обмен ниже. Курение повышает основной обмен на 9%. На основной обмен также влияют внешние факторы. Сезонные колебания - температура, солнечная радиация. В зимние месяцы основной обмен понижен. Затем он начинает повышаться и максимален в летние месяцы. У людей, проживающих на севере, в условиях полярно ночи - снижение основного обмена. Если человек переезжает в среднюю полосу - повышение обмена. Повышение окружающей температуры - снижает основной обмен. Понижение - повышает основной обмен. Определение основного обмена имеет большое клиническое значение. В работе половых желез гипофиза. Для практических целях определяют величину основного обмена по таблицам, которые учитывают вес, возраст, пол.

Отклонение от стандарта не должно превышать 10 %.

В энергетическом обмене выделяют также общий обмен , который складывается из основного обмена и дополнительных энергетических трат, связанных с приемом пищи и выполнением работы в течении суток. Если взять распределение в процентном отношении, то основной обмен затратит 60%. Специфическое динамическое действие пищи добавляет 8% энерготрат. Энергозатраты, связанные с направленной физической нагрузкой 25% и мышечная нагрузка 7%.

Прием пищи оказывает увеличение энергозатрат - это и есть специфическое динамическое действие пищи. Смешанная пища повышает обмен на 15-20%. Изолировано белки повышают на 30-40%, углеводы на 5-10%, жиры на 2-5%.

Основное значение - влияние пищи на процессы клеточного обмена. Происходит усиление химических реакций в клетках, что повышает уровень обмена веществ. Основной расход - синтез белковых клеточных компонентов. У новорожденных отмечается, что каждое кормление увеличивает специфическое - динамическое действие пищи. Максимально при 40-50 вскармливании. Физическая активность является мощным фактором, увеличивающим энергозатраты.

Расход энергии в зависимости от профессиональной деятельности обозначается в зависимости от категории профессий

Коэффициент физической активности

Работники умственного труда

Работники легкого физического труда

Работники средней физического труда

Четвертая

Работники тяжелого физического труда

Работники особо тяжелого физического труда

Коэффициент физической активности - это отношение общих энергозатрат за сутки к величине основного обмена.

Регуляция обмена веществ.

В ходе обмена веществ различают два взаимосвязанных процесса - анаболизма и катаболизма.

Анаболизм Катаболизм

гликоген глюкоза гликоген

ТАГ жиры ТАГ

белки аминокислоты белки

Глюкоза переходит в гликоген, жирные кислоты - в триацилглицериды, аминокислоты - в белки.

Процессы обмена веществ регулируются различными веществами:

анаболизм - инсулином, половыми гормонами, гормон роста, тироксин.

катаболизм - глюкагоном, адреналином, глюкокортикоидами.

Нервная регуляция обменных процессов связано с гипоталамической областью. Разрушение вентромедиальных ядер гипоталамуса повышает потребление пищи и вызывает ожирение. Разрушение латеральных ядер сопровождается отказом от пищи и вызывает похудание. Раздражение паравентрикулярного ядра вызывает жажду, и увеличивает потребность в воде. Укол в области продолговатого мозга вызывает стойкое повышение уровня сахара в крови.

Питание.

Питание - процесс поступления, переваривания, всасывания и усвоения в организме пищевых веществ(нутриентов), необходимых для покрытия пластических и энергетических нужд организма, образования физиологически активных веществ.

Нутрициология - это наука о питании.

Различают питание:

  • Естественное
  • Искусственное - клиническое парентеральное, зондовое энтеральное
  • Лечебное
  • Лечебно-профилактическое.

Принципы составления пищевого рациона.

  1. Калорийная ценность пищи - для восполнения энергозатрат.
  2. Качественный состав пищи(содержание белков, жиров, углеводов)
  3. Витаминный состав
  4. Минеральный состав
  5. Усвояемость пищевых веществ

Сбалансированное питание — это питание, которое характеризуется оптимальным соотношением количества и компонентов пищи физиологическим потребностям организма.

Адекватное питание — это питание, при котором имеется соответствие между пищевыми веществами рациона и ферментным и изоферментным спектром пищеварительной системы.

Распределение пищевой ценности при трёхразовом питании:

25-30%-завтрак

45-50%- на обед

25-30% - на ужин

Распределение пищевой ценности при пятиразовом питании:

20% - первый завтрак

5-10% - второй завтрак

1. Общая характеристика обмена веществ в организме.

2. Обмен белков.

3. Обмен жирова.

4. Обмен углеводов.

ЦЕЛЬ: Представлять общую схему обмена веществ в организме, обмен белков, жиров, углеводов и проявления патологии этих видов обмена.

1. Поступив в организм, молекулы пищевых веществ участвуют во множестве различных реакций. Эти реакции, а также остальные химические проявления жизнедеятельности называются обменом веществ, или метаболизмом. Пищевые вещества используются в качестве сырья для син-теза новых клеток или окисляются, доставляя организму энергию.Часть этой энергии необходима для непрерывного построения новых тканевых компонентов, другая расходуется в процессе функционирования клеток: при сокращении мышц, передаче нервных импульсов, секреции кле-точных продуктов. Остальная энергия освобождается в виде тепла.

Процессы обмена веществ разделяют на анаболические и катаболические. Анаболизм (ассимиляция) - химические процессы, при которых простые вещества соединяются между собой с образованием более сложных,что приводит к накоплению энергии, построению новой протоплазмы и росту. Катаболизм (диссимиляция) - расщепление сложных веществ, приводящее к освобождению энергии, при этом происходит разрушение протоплазмы и расходование ее веществ.

Сущность обмена веществ:1)поступление в организм из внешней среды различных питатель-ных веществ;2)усвоение и использование их в процессе жизнедеятельности как источников энергии и материала для построения тканей;3)выделение образующихся продуктов обмена во внешнюю среду.

Специфические функции обмена веществ:1) извлечение энергии из окружающей среды в форме химической энергии органических веществ;2) превращение экзогенных веществ в строительные блоки, т.е.предшественники макромолекулярных компонентов клетки;3) сборка белков, нуклеиновых кислот и других клеточных компонентов из этих блоков;4) синтез и разрушение биомолекул, необходимых для выполнения различных специфических функций данной клетки.

2. Обмен белков - совокупность пластических и энергетических процессов превращения белков в организме, включая обмен аминокислот и продуктов их распада. Белки - основа всех клеточ-ных структур, являются материальными носителями жизни. Биосинтез белков определяет рост, развитие и самообновление всех структурных элементов в организме и тем самым их функциональную надежность. Суточная потребность в белках (белковый оптимум) для взрослого человека составляет 100-120 г (при трате энергии 3000 ккал/сутки). В распоряжении организма должны быть все аминокислоты (20) в определенном соотношении и количестве, иначе белок не может быть синтезирован. Многие составляющие белок аминокислоты (валин, лейцин, изолейцин, лизин,метионин, треонин, фенилаланин, триптофан) не могут синтезироваться в организме и должны поступать с пищей (незаменимые аминокислоты). Другие аминокислоты могут быть синтезированы в организме и называются заменимыми (гистидин,гликокол,глицин,аланин, глутаминовая кислота, пролин, оксипролин, серии, тирозин, цистеин, аргинин,).Белки делят на биологически полноценные (с полным набором всех незаменимых аминокислот) и неполноценные (при отсутствии одной или нескольких незаменимых аминокислот).

Основные этапы обмена белков:1) ферментативное расщепление белков пищи до аминокислот и всасывание последних;2) превращение аминокислот;3) биосинтез белков;4) расщепление белков; 5) образование конечных продуктов распада аминокислот.

Всосавшись в кровеносные капилляры ворсинок слизистой оболочки тонкого кишечника, аминокислоты по воротной вене поступают в течень,где они немедленно используются, либо задерживаются в качестве небольшого резерва. Часть аминокислот остается в крови и попадает в другие клетки тела, где они включаются в состав новых белков. Белки тела непрерывно расщепляются и синтезируются заново (период обновления общего белка в организме - 80 дней). Если пища содержит больше аминокислот, чем необходимо для синтеза клеточных белков, ферменты печени отщепляют от них аминогруппы NH2, т.е. производят дезаминирование. Другие ферменты, соединяя отщепленные аминогруппы с СО2, образуют из них мочевину, которая переносится с кровью в почки и выделяется с мочой. Белки не откладываются в депо, поэтому белки, которые организм расходует после истощения запаса углеводов и жиров, - не резервные, а ферменты и структурные белки клеток.

Нарушения обмена белков в организме могут быть количественные и качественные. О количественных изменениях белкового обмена судят по азотистому балансу, т.е. по соотношению количества азота, поступившегo в организм с пищей и выделенного из него. В норме у взрослого человека при адекватном питании количество введенного в организм азота равно количеству, выведенного из организма (азотистое равновесие). Когда поступление азота превышает его выде-ление, говорят о положительном азотистом балансе, при этом происходит задержка азота в орга-низме. Наблюдается в период роста организма, во время беременности, при выздоровлении.. Когда количество выведенного из организма азота превышает количество поступившего, говорят об отрицательном азотистом балансе.Он отмечается при значительном снижении содержания белка в пище (белковом голодании).

3. Обмен жиров - совокупность процессов превращения липидов (жиров) в организме. Жиры являются энергетическим и пластическим материалом, входят в состав оболочки и цитоплазмы клеток. Часть жиров накапливается в виде запасов (10-30% массы тела). Основная масса жиров - нейтральные липиды (триглицериды олеиновой, пальмитиновой, стеариновой и других высших жирных кислот). Суточная потребность в жирах для взрослого человека 70-100 г. Биологическая ценность жиров определяется тем, что некоторые ненасыщенные жирные кислоты (линолевая, линоленовая, арахидоновая), необходимые для жизнедеятельности, являются незаменимыми (суточная потребность 10-12 г).и не могут образовываться в организме человека из других жирных кислот, поэтому они должны обязательно поступать с пищей (растительные и животные жиры).

Основные этапы жирового обмена:1) ферментативное расщепление жиров пищи в желудочно-кишечном тракте до глицерина и жирных кислот и всасывание последних в тонком кишечнике; 2) образование липопротеидов в слизистой оболочке кишечника и в печени и транспорт их кровью;3) гидролиз этих соединений на поверхности клеточных мембран ферментом липопротеидлипазой, всасывание жирных кислот и глицерина в клетки, где они используются для синтеза собственных липидов клеток органов и тканей. После синтеза липиды могут подвергаться окисле-нию, выделяя энергию, и превращаться в конечном итоге в углекислый газ и воду (100 г жиров дает при окислении 118 г воды). Жир может трансформироваться в гликоген, а затем подвергаться окислительным процессам по типу углеводного обмена. При избытке жир откладывается в виде запасов в подкожной клетчатке, большом сальнике, вокруг некоторых внутренних органов.

С пищей, богатой жирами, поступает некоторое количество липоидов (жироподобных веществ) - фосфатидов и стеринов. Фосфатиды необходимы организму для синтеза клеточных мембран, они входят в состав ядерного вещества, цитоплазмы клеток. Фосфатидами особенно богата нервная ткань. Главным представителем стеринов является холестерин. Он также входит в состав клеточных мембран, является предшественником гормонов коры надпочечников, половых желез, витамина D, желчных кислот. Холестерин повышает устойчивость эритроцитов к гемолизу, служит изолятором для нервных клеток, обеспечивая проведение нервных импульсов. Нормальное содержание общего холестерина в плазме крови 3,11-6,47 ммоль/л.

4. Обмен углеводов - совокупность процессов превращения углеводов в организме. Углеводы являются источниками энергии для непосредственного использования (глюкоза) или образуют депо энергии (гликоген), являются компонентами сложных соединений (нуклеопротеиды, глико-протеиды), используемых для построения клеточных структур.Суточная потребность 400-500 г.

Основные этапы углеводного обмена: 1) расщепление углеводов пищи в желудочно-кишеч-ном тракте и всасывание моносахаридов в тонком кишечнике;2) депонирование глюкозы в виде гликогена в печени и мышцах или непосредственное ее использование в энергетических целях; 3) расщепление гликогена в печени и поступление глюкозы в кровь по мере ее убыли (мобилизация гликогена);4) синтез глюкозы из промежуточных продуктов (пировиноградной и молочной кислот) и неуглеводных предшественников;5) превращение глюкозы в жирные кислоты; 6) окисление глюкозы с образованием углекислого газа и воды.

Углеводы всасываются в пищеварительном канале в виде глюкозы, фруктозы и галактозы. Они поступают по воротной вене в печень, где фруктоза и галактоза превращаются в глюкозу, накапливающуюся в виде гликогена. Процесс синтеза гликогена в печени из глюкозы называется гликогенезом (в печени содержится в виде гликогена 150-200 г углеводов). Часть глюкозы попадает в общий кровоток и разносится по всему организму, используясь как основной энергетический материал и как компонент сложных соединений (гликопротеиды, нуклеопротеиды).

Глюкоза является постоянной составной частью (биологической константой) крови. Содержание глюкозы в крови в норме 4,44-6,67 ммоль/л, при увеличении ее содержания (гипергликемии) до 8,34-10 ммоль/л она выводится с мочой в виде следов. При понижении уровня глюкозы в крови (гипогликемии) до 3,89 ммоль/л появляется чувство голода, до 3,22 ммоль/л - возникают судороги, бред и потеря сознания (кома). При окислении глюкозы в клетках для получения энергии она в конечном итоге превращается в углекислый газ и воду. Распад гликогена в печени до глюкозы - гликогенолиз. Биосинтез углеводов из продуктов их распада или продуктов распада жиров и белков - гликонеогенез. Расщепление углеводов при отсутствии кислорода с накоплением энергии в АТФ и образованием молочной и пировиноградной кислот - гликолиз.

Когда поступление глюкозы превышает потребность, печень превращает глюкозу в жир, который откладывается про запас в жировых депо и может быть использован в будущем как источ-ник энергии. Нарушение нормального обмена углеводов проявляется повышением содержания глюкозы в крови. Постоянная гипергликемия и глюкозурия, связанная с глубоким нарушением углеводного обмена наблюдается при сахарном диабете. В основе болезни лежит недостаточность инкреторной функции поджелудочной железы. Вследствие недостатка или отсутствия инсулина в организме нарушается способность тканей использовать глюкозу, и она выводится с мочой..

    Мы подошли к наиважнейшему аспекту в планировании питания спортсмена. Тема нашей статьи — белковые обменные процессы. В новом материале вы найдёте ответы на вопросы: что такое обмен белков, какую роль протеины и аминокислоты играют в организме и что бывает, если нарушается белковый метаболизм.

    Общая суть

    Из белка (протеина) состоит большая часть наших клеток. Это основа жизнедеятельности организма и его строительный материал.

    Белки регулируют следующие процессы:

    • мозговую деятельность;
    • переваривание тригидроглицеридов;
    • синтез гормонов;
    • передачу и хранение информации;
    • движение;
    • защиту от агрессивных факторов;

    Примечание: наличие белка напрямую связано с синтезом инсулина. Без достаточного количества , из которых синтезируется этот элемент, повышение сахара в крови становится лишь вопросом времени.

    • создание новых клеток — в частности, за счет белковых структур регенерируют клетки печени;
    • транспортировку липидов и других важных соединений;
    • преобразование липидных связей в смазочные материалы для суставов;
    • контроль метаболизма.

    И еще десятки различных функций. Фактически белок – это мы. Поэтому люди, которые отказываются от употребления мяса и других животных продуктов, все равно вынуждены искать альтернативные источники белка. В противном случае, их вегетарианская жизнь будет сопровождаться дисфункциями и патологическими необратимыми изменениями.

    Как бы это странно не звучало, но небольшой процент белка есть во многих продуктах. Например, крупы (все, за исключением манной) имеют в своем составе до 8% белка, пусть и с неполным аминокислотным составом. Это частично компенсирует дефицит белка, если вы хотите сэкономить на мясе и спортивном питании. Но помните, что организму нужны разные белки — одной гречкой не удовлетворить потребности в аминокислотах. Не все белки расщепляются одинаково и все по разному влияют на деятельность организма.


    В пищеварительном тракте белок расщепляется под воздействием специальных ферментов, которые тоже состоят из белковых структур. Фактически, это замкнутый круг: если в организме есть длительный дефицит белковых тканей, то и новые белки не смогут денатурировать до простых аминокислот, что вызовет еще больший дефицит.

    Важный факт: белки могут участвовать в энергетическом обмене наравне с липидами и углеводами. Дело в том, что глюкоза — необратимая и самая простейшая структура, которая превращается в энергию. В свою очередь белок, пускай и со значительными энергетическими потерями в процессе окончательной денатурации, может быть превращен в . Другими словами, организм в критической ситуации способен использовать белок в качестве топлива.

    В отличие от углеводов и жиров, белки усваиваются ровно в том количестве, которое необходимо для функционирования организма (включая поддержание постоянного анаболического фона). Никаких протеиновых излишков организм не откладывает. Единственное, что может изменить этот баланс – это прием и аналогов гормона тестостерона (анаболических стероидов). Первичная задача таких препаратов – вовсе не повышение силовых показателей, а увеличение синтеза АТФ и белковых структур, за счет чего и .

    Этапы белкового обмена

    Белковые обменные процессы гораздо сложнее углеводных и . Ведь если углеводы – это всего лишь энергия, а жирные кислоты поступают в клетки практически в неизменном виде, то главный строитель мышечной ткани претерпевает в организме целый ряд изменений. На некоторых этапах по белок и вовсе может метаболизироваться в углеводы и, соответственно, в энергию.

    Рассмотрим основные этапы обмена белков в организме человека, начиная с их поступления и запечатывания слюной денатурата будущих аминокислот и заканчивая конечными продуктами жизнедеятельности.

    Примечание: мы поверхностно рассмотрим биохимические процессы, которые позволят понять сам принцип переваривания белков. Для достижения спортивных результатов этого будет достаточно. Однако при нарушениях белкового обмена лучше обратится к врачу, который определит причину патологии и поможет устранить её на уровне гормонов или синтеза самих клеток.

    Этап Что происходит Суть
    Первичное попадание белков Под воздействием слюны расщепляются основные гликогеновые связи, превращаясь в простейшую глюкозу, остальные фрагменты запечатываются для последующей транспортировки. На этом этапе основные белковые ткани в составе продуктов питания выделяются в отдельные структуры, которые затем будут перевариваться.
    Переваривание белков Под воздействием панкреатина и других ферментов происходит дальнейшая денатурация до белков первого порядка. Организм настроен таким образом, что может получать аминокислоты только из простейших цепочек белков, для чего он воздействует кислотой, чтобы сделать белок более расщепляемым.
    Расщепление на аминокислоты Под воздействием клеток внутренней слизистой оболочки кишечника, денатурированные белки всасываются в кровь. Уже упрощенный белок организм расщепляет на аминокислоты.
    Расщепление до энергии Под воздействием огромного количества инсулиновых заменителей и ферментов для переваривания углеводов белок распадается до простейшей глюкозы В условиях, когда организму не хватает энергии, он не денатурирует белок, а при помощи специальных веществ расщепляет его сразу до уровня чистой энерги.
    Перераспределение аминокислотных тканей Циркулируя в общем кровотоке, белковые ткани под воздействием инсулина транспортируются по всем клеткам, отстраивая необходимые аминокислотные связи. Белки, путешествуя по организму, восстанавливают недостающие части, как в мышечных структурах, так и в структурах связанных с гормоностимуляцией, мозговой активностью или последующей ферментацией.
    Составление новых белковых тканей В мышечных тканях аминокислотные структуры, связываясь с микроразрывами, составляют новые ткани, вызывая гипертрофию мышечных волокон. Аминокислоты в нужном составе превращаются в мышечную-белковую ткань.
    Вторичный белковый обмен При наличии переизбытка белковых тканей в организме, они под вторичным воздействием инсулина снова попадают в кровоток для превращения их в другие структуры. При сильном мышечном напряжении, долгом голоде или во время болезни организм использует мышечные белки для компенсации аминокислотного недостатка в других тканях.
    Транспортировка липидных тканей Свободно циркулирующие белки, соединенные в фермент липазу, помогают транспортировать и переваривать вместе с желчью полинасыщенные жирные кислоты. Белок участвует в транспортировке жиров и синтезе холестерина из них. В зависимости от аминокислотного состава белка синтезируются как полезный, так и вредный холестерин.
    Выведение окисленных элементов (конечных продуктов) Отработанные аминокислоты в процессе катаболизма выводятся с продуктами жизнедеятельности организма. Мышечные ткани, поврежденные в результате нагрузок, транспортируются из организма.

    Нарушение метаболизма белков

    Нарушения белкового обмена опасны для организма не менее, чем патологии метаболизма жиров и углеводов. Белки участвуют не только в формировании мышц, но практически во всех физиологических процессах.

    Что может пойти не так? Как мы все знаем, важнейший энергетический элемент в организме — это молекулы АТФ, которые, путешествуя по крови, раздают клеткам необходимые . При нарушении обмена белков «ломается» синтез АТФ и нарушаются процессы, которые косвенно или напрямую влияют на синтезирование из аминокислот новых белковых структур.

    В числе наиболее вероятных последствий метаболических нарушений:

    • острый панкреатит;
    • некроз тканей желудка;
    • раковые новообразования;
    • общее отекание организма;
    • нарушение водно-солевого баланса;
    • потеря веса;
    • замедление умственного развития и роста у детей;
    • невозможность переваривания жирных кислот;
    • невозможность транспортировки продуктов жизнедеятельности по кишечнику без раздражения сосудистых стенок;
    • резкие
    • разрушение костной и мышечной ткани;
    • разрушение нейрон-мышечной связи;
    • ожирение;
    • Под воздействием изменений в гормональном балансе катаболические реакции превалируют над анаболическими.
    • Без поступления белка из пищи возникает недостаток основных синтезируемых аминокислот.
    • В отсутствии достаточного поступления углеводов остаточные белки катаболизируются в метаболиты сахара.
    • Полное отсутствие жировой прослойки.
    • Есть патологии почек и печени.
    • Итог

      Метаболизм белков в организме человека – сложнейший процесс, требующий изучения и внимания. Однако для поддержания уверенного анаболического фона при правильном перераспределении белковых структур в последующие аминокислоты достаточно придерживаться простых рекомендаций:

  1. Потребление белка на килограмм тела отличается для тренированного и нетренированного человека (спортсмена и не-спортсмена).
  2. Для полноценного метаболизма нужны не только углеводы и белки, но и жиры.
  3. Голодание всегда приводит к разрушению белковых тканей для восполнения энергетических запасов.
  4. Белки – это в основном потребители, а не носители энергии.
  5. Оптимизационные процессы в организме направлены на уменьшение энергопотребления с целью сохранения ресурсов на длительное время.
  6. Белки — это не только мышечные ткани, но и ферменты, мозговая активность и многие другие процессы в организме.

И главный совет для спортсменов: не увлекайтесь соевым протеином, так как из всех белковых коктейлей он обладает самым слабым аминокислотным составом. Более того, продукт плохой очистки может привести к катастрофическим последствиям — изменениям гормонального фона и . Длительное потребление сои чревато дефицитом невосполнимых в организме аминокислот, что станет первопричиной нарушения белкового синтеза.