Строение митохондрии и ее функции. Митохондрии

  • 18.10.2019

Бытует крепко укрепившееся мнение, что выносливость человека связано с тренировкой сердечной мышцы, и что для этого нужно длительное время выполнять невысокую по интенсивности работу.
На самом деле всё не так: выносливость неразрывно связано с митохондриями внутри мышечных волокон. Поэтому тренировка выносливости есть не что иное, как развитие максимального количества митохондрии внутри каждого мышечного волокна.
А т.к. максимальное количество митохондрий ограничено пространством внутри мышечного волокна, то и развитие выносливости ограничено тем количеством мышц, которые присутствуют у конкретного человека.
Короче: чем больше у человека митохондрий внутри конкретных мышечных групп, тем более выносливыми являются эти конкретные мышечные группы.
И самое важное: не существует общей выносливости. Есть только локальная выносливость конкретных мышечных групп.

Митохондрии. Что это такое

Митохондрии – это особенные органеллы (структуры) внутри клеток человеческого организма, которые отвечают за производство энергии для мышечных сокращений. Иногда их называют энергетическими станциями клетки.
При этом процесс производства энергии внутри митохондрий происходит в присутствии кислорода. Кислород делает процесс получения энергии внутри митохондрий максимально эффективным, если сравнивать процесс получения энергии без кислорода.
Топливом для производства энергии могут являются совершенно различные вещества: жир, гликоген, глюкоза, лактат, ионы водорода.

Митохондрии и выносливость. Как это происходит

При мышечном сокращении всегда появляется остаточный продукт. Обычно это молочная кислота – химическое соединение из лактата и ионов водорода.
По мере накопления внутри мышечного волокна (мышечной клетки) ионы водорода начинают вмешиваться в процесс получения энергии для сокращения мышечного волокна. А как только уровень концентрации ионов водорода достигает критической отметки, мышечное сокращение прекращается. И данный момент может свидетельствовать об максимальном уровне выносливости конкретной мышечной группы.
Митохондрии обладают способностью поглощать ионы водорода и перерабатывать их внутри себя.
Получается следующая ситуация. Если внутри мышечных волокон присутствует большое количество митохондрий, то они способны утилизировать и большее количество ионов водорода. А это означает более длительную работу конкретной мышцы без необходимости прекратить усилие.
В идеале, если митохондрий внутри работающих мышечных волокон достаточно для утилизации всего количества образующихся ионов водорода, то такое мышечное волокно становится практически неутомимым и способным продолжать работу до тех пор, пока будет достаточное количество питательных веществ для сокращения мышц.
Пример.
Почти каждый из нас способен длительное время идти быстрым темпом, но довольно скоро бывает вынужден прекратить бег быстрым темпом. Почему так выходит?
При быстрой ходьбе работают т.н. окислительные и промежуточные мышечные волокна. Окислительные мышечные волокна характеризуются максимально возможным количеством митохондрий, грубо говоря, митохондрий там 100 %.
В промежуточных мышечных волокнах митохондрий ощутимо меньше, пусть это будет 50 % от максимального количества. В итоге, постепенно внутри промежуточных мышечных волокон начинают накапливаться ионы водорода, которые должны бы привести к прекращению сокращения мышечных волокон.
Но этого не происходит по причине того, что ионы водорода проникают внутрь окислительных мышечных волокон, где митохондрии без труда справляются с их утилизацией.
В итоге, мы способны продолжать движения до тех пор, пока в организме достаточно гликогена, а также запасов жира внутри работающих окислительных мышечных волокон. Затем мы будем вынуждены сделать отдых для пополнения запасов энергии.
В случае с быстрым бегом в работу, помимо упомянутых окислительных и промежуточных мышечных волокон, включаются и т.н. гликолитические мышечные волокна, в которых почти отсутствуют митохондрии. Поэтому гликолитические мышечные волокна способны работать лишь короткое время, зато крайне интенсивно. Именно таким образом повышается скорость бега.
Потом общее количество ионов водорода становится таким, что всё количество имеющихся там же митохондрий уже не способно утилизировать их. Наступает отказ от выполнения работы предложенной интенсивности.
Но что было бы, если бы все мышечные группы имели внутри себя только окислительные мышечные волокна?
В этом случае мышечная группа с окислительными волокнами становится неутомимой. Ее выносливость становится равной бесконечности (при условии достаточного количества питательных веществ – жиров и гликогена).
Делаем следующий вывод: Для тренировки выносливости первоочередное значение имеет развитие митохондрий внутри рабочих мышечных волокон. Именно благодаря митохондриям достигается выносливость мышечных групп.
Не существует общей выносливости организма, потому что выносливость (способность выполнять работу предложенной интенсивности) связана с присутствием в работающих мышцах митохондрий. Чем митохондрий там больше, тем большую выносливость способны показать мышцы.

Двумембранная органелла - митохондрия - характерна для клеток эукариот. От функций митохондрий зависит работа организма в целом.

Строение

Митохондрии состоят из трёх взаимосвязанных компонентов:

  • наружной мембраны;
  • внутренней мембраны;
  • матрикса.

Внешняя гладкая мембрана состоит из липидов, между которых находятся гидрофильные белки, образующие канальцы. Сквозь эти канальцы проходят молекулы при транспорте веществ.

Наружная и внутренняя мембраны находятся на расстоянии 10-20 нм. Межмембранное пространство заполнено ферментами. В отличие от ферментов лизосом, участвующих в расщеплении веществ, ферменты межмембранного пространства переносят остатки фосфорной кислоты к субстрату с затратой АТФ (процесс фосфорилирования).

Внутренняя мембрана упакована под внешней мембраной в виде многочисленных складок - крист.
Они образованы:

  • липидами, проницаемыми только для кислорода, углекислого газа, воды;
  • ферментными, транспортными белками, участвующими в окислительных процессах и транспорте веществ.

Здесь за счёт дыхательной цепи происходит вторая стадия клеточного дыхания и образование 36 молекул АТФ.

ТОП-4 статьи которые читают вместе с этой

Между складками находится полужидкое вещество - матрикс.
В состав матрикса входят:

  • ферменты (сотни разных видов);
  • жирные кислоты;
  • белки (67 % белков митохондрий);
  • митохондриальная кольцевая ДНК;
  • митохондриальные рибосомы.

Наличие рибосом и ДНК свидетельствует о некоторой автономности органоида.

Рис. 1. Строение митохондрий.

Ферментативные белки матрикса участвуют в окислении пирувата - пировиноградной кислоты в ходе клеточного дыхания.

Значение

Основная функция митохондрий в клетке - синтез АТФ, т.е. генерация энергии. В результате клеточного дыхания (окисления) образуется 38 молекул АТФ. Синтез АТФ происходит на основе окисления органических соединений (субстрата) и фосфорилирования АДФ. Субстратом для митохондрий являются жирные кислоты и пируват.

Рис. 2. Образование пирувата в результате гликолиза.

Общее описание процесса дыхания представлено в таблице.

Где происходит

Вещества

Процессы

Цитоплазма

В результате гликолиза разлагается на две молекулы пировиноградной кислоты, которые поступают в матрикс

Отщепляется ацетильная группа, которая присоединяется к коферменту А (КоА), образуя ацетил-кофермент-А (ацетил-КоА), и выделяется молекула углекислого газа. Ацетил-КоА также может формироваться из жирных кислот в отсутствии синтеза углеводов

Ацетил-КоА

Вступает в цикл Кребса или цикл лимонной кислоты (цикл трикарбоновых кислот). Начинается цикл с образования лимонной кислоты. Далее в результате семи реакций образуется две молекулы углекислого газа, НАДН и ФАДН2

НАДН и ФАДН2

Окисляясь, НАДН разлагается на НАД + , два высокоэнергетических электрона (е –) и два протона Н + . Электроны передаются в дыхательную цепь, содержащую три ферментных комплекса, на внутренней мембране. Прохождение электрона по комплексам сопровождается выделением энергии. Одновременно протоны высвобождаются в межмембранное пространство. Свободные протоны стремятся вернуться в матрикс, что создаёт электрический потенциал. При нарастании напряжения Н + устремляются внутрь через АТФ-синтазу - специальный белок. Энергия протонов используется для фосфорилирования АДФ и синтеза АТФ. Соединяясь с кислородом, Н + образует воду

Рис. 3. Процесс клеточного дыхания.

Митохондрии - органеллы, от которых зависит работа целого организма. Признаками нарушения функций митохондрий являются снижение скорости потребления кислорода, увеличение проницаемости внутренней мембраны, набухание митохондрии. Эти изменения происходят вследствие токсического отравления, инфекционного заболевания, гипоксии.

Что мы узнали?

Из урока биологии узнали об особенностях строения митохондрий, кратко рассмотрели функции и процесс клеточного дыхания. Благодаря работе митохондрий пировиноградная кислота, образованная в процессе гликолиза, и жирные кислоты окисляются до углекислого газа и воды. В результате клеточного дыхания высвобождается энергия, которая тратится на жизнедеятельность организма.

Тест по теме

Оценка доклада

Средняя оценка: 4.4 . Всего получено оценок: 67.

Лекция № 6.

Количество часов: 2

МИТОХОНДРИИ И ПЛАСТИДЫ

1.

2. Пластиды, строение, разновидности, функции

3.

Митохондрии и пластиды – двухмембранные органоиды эукариотических клеток. Митохондрии встречаются во всех клетках животных и растений. Пластиды характерны для клеток растений, осуществляющих фотосинтетические процессы. Эти органоиды имеют сходный план строения и некоторые общие свойства. Однако по основным метаболическим процессам они существенно отличаются друг от друга.

1. Митохондрии, строение, функциональное значение

Общая характеристика митохондрий. Митохондрии (греч. “митос” - нить, “хондрион” - зерно, гранула) – округлые, овальные или палочковидные двухмембранные органоиды диаметром около 0,2-1 мкм и длиной до 7-10 мкм. Эти органоиды можно обнаружить с помощью световой микроскопии, поскольку они обладают достаточной величиной и высокой плотностью. Особенности внутреннего строения их можно изучить только с помощью электронного микроскопа. Митохондрии были открыты в 1894 г. Р. Альтманом, который дал им название «биобласты». Термин "митохондрия" был введен К. Бенда в 1897 г. Митохондрии имеются практически во всех эукариотических клетках. У анаэробных организмов (кишечные амебы и др.) митохондрии отсутствуют. Число митохондрий в клетке колеблется от 1 до 100 тыс. и зависит от типа, функциональной активности и возраста клетки. Так в растительных клетках митохондрий меньше, чем в животных; а в молодых клетках больше, чем в старых. Жизненный цикл митохондрий составляет несколько дней. В клетке митохондрии обычно скапливаются вблизи участков цитоплазмы, где возникает потребность в АТФ. Например, в сердечной мышце митохондрии находятся вблизи миофибрилл, а в спермиях образуют спиральный футляр вокруг оси жгутика.

Ультрамикроскопическое строение митохондрий. Митохондрии ограничены двумя мембранами, каждая из которых имеет толщину около 7 нм. Внешнюю мембрану от внутренней отделяет межмембранное пространство шириной около 10-20 нм. Внешняя мембрана гладкая, а внутренняя образует складки – кристы (лат. “криста” – гребень, вырост), увеличивающие ее поверхность. Число крист неодинаково в митохондриях разных клеток. Их может быть от нескольких десятков до нескольких сотен. Особенно много крист в митохондриях активно функционирующих клеток, например мышечных. В кристах располагаются цепи переноса электронов и сопряженного с ним фосфорилирования АДФ (окислительное фосфорилирование). Внутреннее пространство митохондрий заполнено гомогенным веществом, называемым матриксом. Митохондриальные кристы обычно полностью не перегораживают полость митохондрии. Поэтому матрикс на всем протяжении является непрерывным. В матриксе содержатся кольцевые молекулы ДНК, митохондриальные рибосомы, встречаются отложения солей кальция и магния. На митохондриальной ДНК происходит синтез молекул РНК различных типов, рибосомы участвуют в синтезе ряда митохондриальных белков. Малые размеры ДНК митохондрий не позволяют кодировать синтез всех митохондриальных белков. Поэтому синтез большинства белков митохондрий находится под ядерным контролем и осуществляется в цитоплазме клетки. Без этих белков рост и функционирование митохондрий невозможно. Митохондриальная ДНК кодирует структурные белки, ответственные за правильную интеграцию в митохондриальных мембранах отдельных функциональных компонентов.

Размножение митохондрий. Митохондрии размножаются путем деления перетяжкой или фрагментацией крупных митохондрий на более мелкие. Образовавшиеся таким путем митохондрии могут расти и снова делиться.

Функции митохондрий. Основная функция митохондрий заключается в синтезе АТФ. Этот процесс происходит в результате окисления органических субстратов и фосфорилирования АДФ. Первый этап этого процесса происходит в цитоплазме в анаэробных условиях. Поскольку основным субстратом является глюкоза, то процесс носит название гликолиза. На данном этапе субстрат подвергается ферментативному расщеплению до пировиноградной кислоты с одновременным синтезом небольшого количества АТФ. Второй этап происходит в митохондриях и требует присутствия кислорода. На этом этапе происходит дальнейшее окисление пировиноградной кислоты с выделением СО 2 и переносом электронов на акцепторы. Эти реакции осуществляются с помощью ряда ферментов цикла трикарбоновых кислот, которые локализованы в матриксе митохондрии. Освободившиеся в процессе окисления в цикле Кребса электроны переносятся в дыхательную цепь (цепь переноса электронов). В дыхательной цепи они соединяются с молекулярным кислородом, образуя молекулы воды. В результате этого небольшими порциями выделяется энергия, которая запасается в виде АТФ. Полное окисление одной молекулы глюкозы с образованием диоксида углерода и воды обеспечивает энергией перезарядку 38 молекул АТФ (2 молекулы в цитоплазме и 36 в митохондриях).

Аналоги митохондрий у бактерий. У бактерий митохондрий нет. Вместо них у них имеются цепи переноса электронов, локализованные в мембране клетки.

2. Пластиды, строение, разновидности, функции. Проблема происхождения пластид

Пластиды (от. греч. plastides – создающие, образующие) – это двухмембранные органоиды, характерные для фотосинтезирующих эукариотных организмов. Различают три основных типа пластид: хлоропласты, хромопласты и лейкопласты. Совокупность пластид в клетке называют пластидомом. Пластиды связаны между собой единым происхождением в онтогенезе от пропластид меристематических клеток. Каждый их этих типов при определенных условиях может переходить один в другой. Как и митохондрии, пластиды содержат собственные молекулы ДНК. Поэтому они также способны размножаться независимо от деления клетки.

Хлоропласты (от греч. « chloros » – зеленый, « plastos » - вылепленный) – это пластиды, в которых осуществляется фотосинтез.

Общая характеристика хлоропластов. Хлоропласты представляют собой органоиды зеленого цвета длиной 5-10 мкм и шириной 2-4 мкм. У зеленых водорослей встречаются гигантские хлоропласты (хроматофоры), достигающие длины 50 мкм. У высших растений хлоропласты имеют двояковыпуклую или эллипсоидную форму. Количество хлоропластов в клетке может варьировать от одного (некоторые зеленые водоросли) до тысячи (махорка). В клетке высших растений в среднем находится 15-50 хлоропластов. Обычно хлоропласты равномерно распределены по цитоплазме клетки, но иногда они группируются около ядра или клеточной оболочки. По-видимому, это зависит от внешних воздействий (интенсивность освещения).

Ультрамикроскопическое строение хлоропластов. От цитоплазмы хлоропласты отделены двумя мембранами, каждая из которых имеет толщину около 7 нм. Между мембранами находится межмембранное пространство диаметром около 20-30 нм. Наружная мембрана гладкая, внутренняя имеет складчатую структуру. Между складками располагаются тилакоиды , имеющие вид дисков. Тилакоиды образуют стопки наподобие столбика монет, называемые гранами. М ежду собой граны соединены другими тилакоидами (ламелы, фреты ). Число тилакоидов в одной гране варьирует от нескольких штук до 50 и более. В свою очередь в хлоропласте высших растений находится около 50 гран (40-60), расположенных в шахматном порядке. Такое расположение обеспечивает максимальную освещенность каждой граны. В центре граны находится хлорофилл, окруженный слоем белка; затем располагается слой липоидов, снова белок и хлорофилл. Хлорофилл имеет сложное химическое строение и существует в нескольких модификациях ( a , b , c , d ). У высших растений и водорослей в качестве основного пигмента содержится х лорофилл а с формулой С 55 Н 72 О 5 N 4 М g . В качестве дополнительных содержатся хлорофилл b (высшие растения, зеленые водоросли), хлорофилл с (бурые и диатомовые водоросли), хлорофилл d (красные водоросли). Образование хлорофилла происходит только при наличии света и железа, играющего роль катализатора. Матрикс хлоропласта представляет собой бесцветное гомогенное вещество, заполняющее пространство между тилакоидами. В матриксе находятся ферменты "темновой фазы" фотосинтеза, ДНК, РНК, рибосомы. Кроме этого, в матриксе происходит первичное отложение крахмала в виде крахмальных зерен.

Свойства хлоропластов:

· полуавтономность (имеют собственный белоксинтезирующий аппарат, однако большая часть генетической информации находится в ядре);

· способность к самостоятельному движению (уходят от прямых солнечных лучей);

· способность к самостоятельному размножению.

Размножение хлоропластов. Хлоропласты развиваются из пропластид, которые способны реплицироваться путем деления. У высших растений также встречается деление зрелых хлоропластов, но крайне редко. При старении листьев и стеблей, созревании плодов хлоропласты утрачивают зеленую окраску, превращаясь в хромопласты.

Функции хлоропластов. Основная функция хлоропластов – фотосинтез. Кроме фотосинтеза хлоропласты осуществляют синтез АТФ из АДФ (фосфорилирование), синтез липидов, крахмала, белков. В хлоропластах также синтезируются ферменты, обеспечивающие световую фазу фотосинтеза.

Хромопласты (от греч. chromatos – цвет, краска и « plastos » – вылепленный) – это окрашенные пластиды. Цвет их обусловлен наличием следующих пигментов: каротина (оранжево-желтый), ликопина (красный) и ксантофилла (желтый). Хромопластов особенно много в клетках лепестков цветков и оболочек плодов. Больше всего хромопластов в плодах и увядающих цветках и листьях. Хромопласты могут развиваться из хлоропластов, которые при этом теряют хлорофилл и накапливают каротиноиды. Это происходит при созревании многих фруктов: налившись спелым соком, они желтеют, розовеют или краснеют. Основная функция хромопластов заключается в обеспечении окраски цветов, плодов, семян.

В отличие от лейкопластов и особенно хлоропластов внутренняя мембрана хлоропластов не образует тилакоидов (или образует одиночные). Хромопласты – это конечный итог развития пластид (в хромопласты превращаются хлоропласты и пластиды).

Лейкопласты (от греч. leucos – белый, plastos – вылепленный, созданный) . Это бесцветные пластиды округлой, яйцевидной, веретенообразной формы. Находятся в подземных частях растений, семенах, эпидермисе, сердцевине стебля. Особенно богаты лейкопластами клубни картофеля. Внутренняя оболочка образует немногочисленные тилакоиды. На свету из хлоропластов образуются хлоропласты. Лейкопласты, в которых синтезируется и накапливается вторичный крахмал называют амилопластами , масла – эйлалопластами , белки – протеопластами. Основная функция лейкопластов – это аккумуляция питательных веществ.

3. Проблема происхождения митохондрий и пластид. Относительная автономия

Существует две основные теории происхождения митохондрий и пластид. Это теории прямой филиации и последовательных эндосимбиозов. Согласно теории прямой филиации митохондрии и пластиды образовались путем компартизации самой клетки. Фотосинтезирующие эукариоты произошли от фотосинтезирующих прокариот. У образовавшихся автотрофных эукариотических клеток путем внутриклеточной дифференцировки образовались митохондрии. В результате утраты пластид от автотрофов произошли животные и грибы.

Наиболее обоснованной является теория последовательных эндосимбиозов. Согласно этой теории возникновение эукариотической клетки прошло через несколько этапов симбиоза с другими клетками. На первой стадии клетки типа анаэробных гетеротрофных бактерий включили в себя свободноживущие аэробные бактерии, превратившиеся в митохондрии. Параллельно этому в клетке-хозяине прокариотической генофор формируется в обособленное от цитоплазмы ядро. Таким путем возникла первая эукариотическая клетка, которая была гетеротрофной. Возникшие эукариотические клетки путем повторных симбиозов включили в себя синезеленые водоросли, что привело к появлению в них структур типа хлоропластов. Таким образом, митохондрии уже были у гетеротрофных эукариотических клеток, когда последние в результате симбиоза приобрели пластиды. В дальнейшем в результате естественного отбора митохондрии и хлоропласты утратили часть генетического материала и превратились в структуры с ограниченной автономией.

Доказательства эндосимбиотической теории:

1. Сходство структуры и энергетических процессов у бактерий и митохондрий, с одной стороны, и у синезеленых водорослей и хлоропластов, с другой стороны.

2. Митохондрии и пластиды имеют собственную специфическую систему синтеза белков (ДНК, РНК, рибосомы). Специфичность этой системы заключается в автономности и резком отличии от таковой в клетке.

3. ДНК митохондрий и пластид представляет собой небольшую циклическую или линейную молекулу, которая отличается от ДНК ядра и по своим характеристикам приближается к ДНК прокариотических клеток. Синтез ДНК митохондрий и пластид не зависит от синтеза ядерной ДНК.

4. В митохондриях и хлоропластах имеются и-РНК, т-РНК, р-РНК. Рибосомы и р-РНК этих органоидов резко отличаются от таковых в цитоплазме. В частности рибосомы митохондрий и хлоропластов, в отличие от цитоплазматических рибосом, чувствительны к антибиотику хлорамфениколу, подавляющему синтез белка у прокариотических клеток.

5. Увеличение числа митохондрий происходит путем роста и деления исходных митохондрий. Увеличение числа хлоропластов происходит через изменения пропластид, которые, в свою очередь, размножаются путем деления.

Эта теория хорошо объясняет сохранение у митохондрий и пластид остатков систем репликации и позволяет построить последовательную филогению от прокариот к эукариотам.

Относительная автономия хлоропластов и пластид. В некоторых отношениях митохондрии и хлоропласты ведут себя как автономные организмы. Например, эти структуры образуются только из исходных митохондрий и хлоропластов. Это было продемонстрировано в опытах на растительных клетках, у которых образование хлоропластов подавляли антибиотиком стрептомицином, и на клетках дрожжей, где образование митохондрий подавляли другими препаратами. После таких воздействий клетки уже никогда не восстанавливали отсутствующие органеллы. Причина в том, что митохондрии и хлоропласты содержат определенное количество собственного генетического материала (ДНК), который кодирует часть их структуры. Если эта ДНК утрачивается, что и происходит при подавлении образования органелл, то структура не может быть воссоздана. Оба типа органелл имеют свою собственную белок-синтезирующую систему (рибосомы и транспортные РНК), которая несколько отличается от основной белок-синтезирующей системы клетки; известно, например, что белок-синтезирующая система органелл может быть подавлена с помощью антибиотиков, тогда как на основную систему они не действуют. ДНК органелл ответственна за основную часть внехромосомной, или цитоплазматической, наследственности. Внехромосомная наследственность не подчиняется менделевским законам, так как при делении клетки ДНК органелл передается дочерним клеткам иным путем, нежели хромосомы. Изучение мутаций, которые происходят в ДНК органелл и ДНК хромосом, показало, что ДНК органелл отвечает лишь за малую часть структуры органелл; большинство их белков закодированы в генах, расположенных в хромосомах. Относительная автономия митохондрий и пластид рассматривается как одно из доказательств их симбиотического происхождения.

Характерные для подавляющего большинства клеток. Основная функция – это окисление органических соединений и производство АТФ-молекул из освободившейся энергии. Маленькая митохондрия является главной энергетической станцией всего организма.

Происхождение митохондрий

Среди ученых на сегодняшний день весьма популярно мнение, что митохондрия появилась в клетке не самостоятельно в ходе эволюции. Скорее всего, это произошло из-за захвата примитивной клеткой, не способной на тот момент самостоятельно использовать кислород, бактерии, которая умела это и, соответственно, была превосходным источником энергии. Подобный симбиоз оказался успешным и закрепился в последующих поколениях. В пользу этой теории указывает наличие в митохондриях собственной ДНК.

Как устроены митохондрии

Митохондрия обладает двумя мембранами: наружной и внутренней. Главная функция наружной мембраны – это отделение органоида от цитоплазмы клетки. Она состоит из билипидного слоя и белков, пронизывающих его, через которые и осуществляется транспорт молекул и ионов, необходимых для работы. В то время как гладкая, внутренняя образует многочисленные складки – кристы, которые существенно увеличивают ее площадь. Внутренняя мембрана по большей части состоит из белков, среди которых присутствуют ферменты дыхательной цепи, транспортные белки и крупные АТФ-синтетазные комплексы. Именно в этом месте происходит синтез АТФ. Между наружной и внутренней мембраной находится межмембранное пространство с присущими ему ферментами.

Внутреннее пространство митохондрий называется матрикс. Здесь расположены ферментные системы окисления жирных кислот и пирувата, ферменты цикла Кребса, а также наследственный материал митохондрий – ДНК, РНК и белоксинтезирующий аппарат.

Для чего нужны митохондрии

Главной функцией митохондрий является синтез универсальной формы химической энергии – АТФ. Также они принимают участие в цикле трикарбоновых кислот, превращая пируват и жирные кислоты в ацетил-CoA, а затем окисляя его. В этом органоиде хранится и передается по наследству митохондриальная ДНК, кодирующая воспроизводство тРНК, рРНК и некоторых белков, необходимых для нормального функционирования митохондрий.

Строение и функции ядра растительной клетки.

Ядро – обязательная часть эукариотической клетки. Это место хранения и воспроизведения наследственной информации. Ядро также служит центром управления обменом веществ и почти всех процессов, происходящих в клетке. Чаще всего в клетках имеется лишь одно ядро, редко - два или несколько. Форма его чаще все­го шаровидная или эллипсоидаль­ная. В молодых, особенно меристематических, клетках оно занимает центральное положение, но позднее обычно смещается к оболочке, от­тесняемое растущей вакуолью. Снаружи ядро покрыто двойной мембраной – ядерной оболочкой, пронизанной порами (поры ядра - динамичные образования, они могут открываться и закрываться; таким путем может осуществляться регуляция обмена между ядром и цитоплазмой) на краях которых наружная мембрана переходит во внутреннюю. Наружная ядерная мембрана соединяется с мембранными каналами ЭПС. На ней располагаются рибосомы. Внутренняя мембрана может давать впячивания.

Внутреннее содержимое ядра – кариоплазма с погруженными в нее хроматином и ядрышками, и рибосомами. Кариоплазма (нуклеоплазма) представляет собой желеобразный раствор, который заполняет пространство между структурами ядра (хроматином и ядрышками). Она содержит ионы, нуклеотиды, ферменты.

Хроматин – это деспирализованная форма существования хромосом. В деспирализованном состоянии хроматин находится в ядре неделящейся клетке. Хроматин и хромосомы взаимно переходят друг в друга. По химической организации как хроматин, так и хромосомы не отличаются. Химическую основу составляет дезоксирибонуклеопротеин – комплекс ДНК с белками. С помощью белков происходит многоуровневая упаковка молекул ДНК, при этом хроматин приобретает компактную форму.

Ядрышко, обычно шаровидной формы (одно или несколько), не окружено мембраной, содержит фибриллярные белковые нити и РНК. Ядрышки – не постоянные образования, они исчезают в начале деления клетки и восстанавливаются после его окончания. Ядрышки имеются только в неделящихся клетках. В ядрышках происходит формирование рибосом, синтез ядерных белков. Сами же ядрышки образуются на участках вторичных перетяжек хромосом (ядрышковых организаторах).

Ядро – обязательная часть эукариотической клетки. Диаметр ядра колеблется от 5 до 20 мкм. Главная функция ядра – хранение генетического материала в форме ДНК и передача ее дочерним клеткам при клеточном делении. Кроме того, ядро управляет белковыми синтезами, контролирует все процессы жизнедеятельности клетки. (в растительной клетке ядро описал Р.Броун в 1831г., в животной – Т.Шванн в 1838г.).

Химический состав ядра представлен, главным образом, нуклеиновыми кислотами и белками.

Строение и функции митохондрий.

Митохондрии или хондриосомы - «силовые» станции клетки, в них локализована большая часть реакций дыхания (аэробная фаза). В митохондриях происходит аккумуляция энергии дыхания в аденозинтрифосфате (АТФ). Энергия, запасаемая в АТФ, служит основным источником для физиологической деятельности клетки. Митохондрии обычно имеют удлиненную палочковидную форму длиной 4-7 мкм и диаметром 0,5-2 мкм. Число митохондрий в клетке может быть различным от 500 до 1000 и зависит от роли данного органа в процессах энергетического обмена.

Химический состав митохондрий несколько колеблется. В основном это белково-липидные органеллы. Содержание белка в них составляет 60-65%, причем структурные и ферментативные белки содержатся примерно в равной пропорции, а также около 30% липидов. Очень важно, что митохондрии содержат нуклеиновые кислоты: РНК - 1 % и ДНК -0,5%. В митохондриях имеется не только ДНК, но и вся система синтеза белка, в том числе рибосомы.

Митохондрии окружены двойной мембраной. Толщина мембран составляет 6-10 нм. Мембраны митохондрий на 70% состоят из белка. Фосфолипиды мембран представлены фосфатидтилхолином, фосфатидилэтаноламином, а также специфическими фосфолипидами, например, кардиолипином. Мембраны митохондрий не пропускают Н+ и служат барьером для их транспорта.

Между мембранами находится заполненное жидкостью перимитохондриальное пространство. Внутреннее пространство митохондрий заполняет матрикс в виде студнеобразной полужидкой массы. В матриксе сосредоточены ферменты цикла Кребса. Внутренняя мембрана дает выросты - кристы в виде пластин и трубочек, они разделяют внутреннее пространство митохондрий на отдельные отсеки. Во внутренней мембране локализована дыхательная цепь (цепь переноса электронов).