Сильные и слабые электролиты. Степень электролитической диссоциации

  • 16.10.2019

Гидролиз солей

Гидролизом называют реакции взаимодействия вещества с водой, приводящие к образованию слабых электролитов (кислот, оснований, кислых или основных солей). Результат гидролиза можно расценивать как нарушение равновесия диссоциации воды. Гидролизу подвержены соединения различных классов, но наиболее важным случаем является гидролиз солей. Соли, как правило, - сильные электролиты, которые подвергаются полной диссоциации на ионы и могут взаимодействовать с ионами воды.

Важнейшие случаи гидролиза солей :

1. Соль образована сильным основанием и сильной кислотой. Например: NaCl – соль образованная сильным основанием NaOH и сильной кислотой HCl;

NaCl + HOH ↔ NaOH + HCl – молекулярное уравнение;

Na + + Cl - + HOH ↔ Na + + OH - + H + + Cl - – полное ионное уравнение;

HOH ↔ OH - + H + – сокращенное ионное уравнение.

Как видно из сокращенного ионного уравнения соль образованная сильным основанием и сильной кислотой, с водой не взаимодействует, т. е. не подвергается гидролизу, и среда при этом остается нейтральной.

2. Соль образована сильным основанием и слабой кислотой. Например: NaNO 2 – соль, образованная сильным основанием NaOH и слабой кислотой HNO 2 , которая практически не диссоциирует на ионы.

NaNO 2 + HOH ↔ NaOH + HNO 2 ;

Na + + NO 2 - + HOH ↔ Na + + OH - + HNO 2 ;

NO 2 - + HOH ↔ OH - + HNO 2 .

В этом случае соль подвергается гидролизу, причем гидролиз идет по аниону, а катион в процессе гидролиза практически не участвует. Так как в результате гидролиза образуется щелочь, то в растворе находится избыток анионов OH - . Раствор такой соли приобретает щелочную среду, т.е. рН > 7.

I ступень Na 2 СO 3 + HOH ↔ NaOH + NaHCO 3 ;

CO 3 2- + HOH ↔ OH - + HCO 3 - ;

II ступень NaHСO 3 + HOH ↔ NaOH + H 2 CO 3 ;

HCO 3 - + HOH ↔ OH - + H 2 CO 3 .

При стандартных условиях и умеренном разбавлении раствора гидролиз солей протекает только по первой ступени. Вторая - подавляется продуктами, которые образуются на первой ступени. Накопление ионов OH - влечет за собой смещение равновесия влево.

3. Соль образована слабым основанием и сильной кислотой. Например: NH 4 NO 3 – соль, образованная слабым основанием NH 4 OH и сильной кислотой HNO 3 .

NH 4 NO 3 + HOH ↔ NH 4 OH + HNO 3 ;

NH 4 + + HOH ↔ H + + NH 4 OH.

В этом случае соль подвергается гидролизу, причем гидролиз идет по катиону, а анион в процессе гидролиза практически не участвует. Раствор такой соли приобретает кислую среду, т.е. рН < 7.

Как и в предыдущем случае, соли многозарядных ионов гидролизуются по стадиям, хотя вторая стадия также подавляется.

I ступень Mg(NO 3) 2 + HOH ↔ MgOHNO 3 + HNO 3 ;

Mg 2+ + HOH ↔ MgOH + + H + ;

II ступень MgOHNO 3 + HOH ↔ Mg(OH) 2 + HNO 3 ;

MgOH + + HOH ↔ Mg(OH) 2 + H + .

4. Соль образована слабым основанием и слабой кислотой. Например: NH 4 CN – соль, образованная слабым основанием NH 4 OH и слабой кислотой HCN.

NH 4 CN + HOH ↔ NH 4 OH + HCN ;

NH 4 + + CN - + HOH ↔ NH 4 OH + HCN.

В этом случае в гидролизе участвуют и катионы и анионы. Они связывают и водородные катионы, и гидроксо-анионы воды, образуя слабые электролиты (слабые кислоты и слабые основания). Реакция раствора таких солей может быть либо слабокислой (если основание, образовавшееся в результате гидролиза, является более слабым, чем кислота), либо слабощелочной (если основание окажется более сильным, чем кислота), либо будет нейтральной (если основание и кислота проявляют одинаковую силу).

При гидролизе соли многозарядных ионов I стадия не подавляет последующие, и гидролиз таких солей протекает полностью даже при комнатной температуре.

I ступень (NH 4) 2 S + HOH ↔ NH 4 OH + NH 4 HS ;

2NH 4 + + S 2- + HOH ↔ NH 4 OH + NH 4 + + HS - ;

II ступень NH 4 HS + HOH ↔ NH 4 OH + H 2 S ;

NH 4 + + HS - + HOH ↔ NH 4 OH + H 2 S.

Электролиты как химические вещества известны с древних времён. Однако большинство областей своего применения они завоевали относительно недавно. Мы обсудим самые приоритетные для промышленности области использования этих веществ и разберёмся, что же последние собой представляют и чем отличаются друг от друга. Но начнём с экскурса в историю.

История

Самые старые известные электролиты - это соли и кислоты, открытые ещё в Древнем мире. Однако представления о строении и свойствах электролитов развивались со временем. Теории этих процессов эволюционировали, начиная с 1880 годов, когда был сделан ряд открытий, связанный с теориями свойств электролитов. Наблюдались несколько качественных скачков в теориях, описывающих механизмы взаимодействия электролитов с водой (ведь только в растворе они приобретают те свойства, благодаря которым их используют в промышленности).

Сейчас мы подробно разберём несколько теорий, оказавших наибольшее влияние на развитие представлений об электролитах и их свойствах. И начнём с самой распространённой и простой теории, которую каждый из нас проходил в школе.

Теория электролитической диссоциации Аррениуса

в 1887 году шведский химик и Вильгельм Оствальд создали теорию электролитической диссоциации. Однако тут тоже не всё так просто. Сам Аррениус был сторонником так называемой физической теории растворов, которая не учитывала взаимодействие составляющих вещества с водой и утверждала, что в растворе существуют свободные заряженные частицы (ионы). Кстати, именно с таких позиций сегодня рассматривают электролитическую диссоциацию в школе.

Поговорим всё-таки о том, что даёт эта теория и как она объясняет нам механизм взаимодействия веществ с водой. Как и у любой другой, у неё есть несколько постулатов, которые она использует:

1. При взаимодействии с водой вещество распадается на ионы (положительный - катион и отрицательный - анион). Эти частицы подвергаются гидратации: они притягивают молекулы воды, которые, кстати, заряжены с одной стороны положительно, а с другой - отрицательно (образуют диполь), в результате формируются в аквакомплексы (сольваты).

2. Процесс диссоциации обратим - то есть если вещество распалось на ионы, то под действием каких-либо факторов оно вновь может превратиться в исходное.

3. Если подключить к раствору электроды и пустить ток, то катионы начнут движение к отрицательному электроду - катоду, а анионы к положительно заряженному - аноду. Именно поэтому вещества, хорошо растворимые в воде, проводят электрический ток лучше, чем сама вода. По той же причине их назвали электролитами.

4. электролита характеризует процент вещества, подвергшегося растворению. Этот показатель зависит от свойств растворителя и самого растворённого вещества, от концентрации последнего и от внешней температуры.

Вот, по сути, и все основные постулаты этой несложной теории. Ими мы будем пользоваться в этой статье для описания того, что же происходит в растворе электролита. Примеры этих соединений разберём чуть позже, а сейчас рассмотрим другую теорию.

Теория кислот и оснований Льюиса

По теории электролитической диссоциации, кислота - это вещество, в растворе которого присутствует катион водорода, а основание - соединение, распадающееся в растворе на гидроксид-анион. Существует другая теория, названная именем известного химика Гилберта Льюиса. Она позволяет несколько расширить понятие кислоты и основания. По теории Льюиса, кислоты - или молекулы вещества, которые имеют свободные электронные орбитали и способны принять электрон от другой молекулы. Несложно догадаться, что основаниями будут являться такие частицы, которые способны отдать один или несколько своих электронов в "пользование" кислоте. Очень интересно здесь то, что кислотой или основанием может быть не только электролит, но и любое вещество, даже нерастворимое в воде.

Протолитическая теория Брендстеда-Лоури

В 1923 году, независимо друг от друга, двое учёных - Й. Бренстед и Т. Лоури -предложили теорию, которая сейчас активно применяется учёными для описания химических процессов. Суть этой теории в том, что смысл диссоциации сводится к передаче протона от кислоты основанию. Таким образом, последнее понимается здесь как акцептор протонов. Тогда кислота является их донором. Теория также хорошо объясняет существование веществ, проявляющих свойства и кислоты и основания. Такие соединения называются амфотерными. В теории Бренстеда-Лоури для них также применяется термин амфолиты, тогда как кислота или основания принято называть протолитами.

Мы подошли к следующей части статьи. Здесь мы расскажем, чем отличаются друг от друга сильные и слабые электролиты и обсудим влияние внешних факторов на их свойства. А затем уже приступим к описанию их практического применения.

Сильные и слабые электролиты

Каждое вещество взаимодействует с водой индивидуально. Какие-то растворяются в ней хорошо (например, поваренная соль), а какие-то совсем не растворяются (например, мел). Таким образом, все вещества делятся на сильные и слабые электролиты. Последние представляют собой вещества, плохо взаимодействующие с водой и оседающие на дне раствора. Это означает, что они имеют очень низкую степень диссоциации и высокую энергию связей, которая не позволяет при нормальных условиях распадаться молекуле на составляющие её ионы. Диссоциация слабых электролитов происходит либо очень медленно, либо при повышении температуры и концентрации этого вещества в растворе.

Поговорим о сильных электролитах. К ним можно отнести все растворимые соли, а также сильные кислоты и щёлочи. Они легко распадаются на ионы и очень трудно собрать их в осадки. Ток в электролитах, кстати, проводится именно благодаря ионам, содержащимся в растворе. Поэтому лучше всех проводят ток сильные электролиты. Примеры последних: сильные кислоты, щёлочи, растворимые соли.

Факторы, влияющие на поведение электролитов

Теперь разберёмся, как влияет изменение внешней обстановки на Концентрация напрямую влияет на степень диссоциации электролита. Более того, это соотношение можно выразить математически. Закон, описывающий эту связь, называется законом разбавления Оствальда и записывается так: a = (K / c) 1/2 . Здесь a - это степень диссоциации (берётся в долях), К - константа диссоциации, разная для каждого вещества, а с - концентрация электролита в растворе. По этой формуле можно узнать много нового о веществе и его поведении в растворе.

Но мы отклонились от темы. Кроме концентрации, на степень диссоциации также влияет температура электролита. Для большинства веществ её увеличение повышает растворимость и химическую активность. Именно этим можно объяснить протекание некоторых реакций только при повышенной температуре. При нормальных условиях они идут либо очень медленно, либо в обе стороны (такой процесс называется обратимым).

Мы разобрали факторы, определяющие поведение такой системы, как раствор электролита. Сейчас перейдём к практическому применению этих, без сомнения, очень важных химических веществ.

Промышленное использование

Конечно, все слышали слово "электролит" применительно к аккумуляторам. В автомобиле используют свинцово-кислотные аккумуляторы, роль электролита в котором выполняет 40-процентная серная кислота. Чтобы понять, зачем там вообще нужно это вещество, стоит разобраться в особенностях работы аккумуляторов.

Так в чём принцип работы любого аккумулятора? В них происходит обратимая реакция превращения одного вещества в другое, в результате которой высвобождаются электроны. При заряде аккумулятора происходит взаимодействие веществ, которого не получается при нормальных условиях. Это можно представить как накопление электроэнергии в веществе в результате химической реакции. При разряде же начинается обратное превращение, приводящее систему к начальному состоянию. Эти два процесса вместе составляют один цикл заряда-разряда.

Рассмотрим вышеизложенный процесс на конкретном примере - свинцово-кислотном аккумуляторе. Как нетрудно догадаться, этот источник тока состоит из элемента, содержащего свинец (а также диокисд свинца PbO 2) и кислоты. Любой аккумулятор состоит из электродов и пространства между ними, заполненного как раз электролитом. В качестве последнего, как мы уже выяснили, в нашем примере используется серная кислота концентрацией 40 процентов. Катод такого аккумулятора делают из диоксида свинца, а анод состоит из чистого свинца. Всё это потому, что на этих двух электродах протекают разные обратимые реакции с участием ионов, на которые продиссоциировала кислота:

  1. PbO 2 + SO 4 2- + 4H + + 2e - = PbSO 4 + 2H 2 O (реакция, происходящая на отрицательном электроде - катоде).
  2. Pb + SO 4 2- - 2e - = PbSO 4 (Реакция, протекающая на положительном электроде - аноде).

Если читать реакции слева направо - получаем процессы, происходящие при разряде аккумулятора, а если справа налево - при заряде. В каждом эти реакции разные, но механизм их протекания в общем описывается одинаково: происходят два процесса, в одном из которых электроны "поглощаются", а в другом, наоборот, "выходят". Самое главное то, что число поглощённых электронов равно числу вышедших.

Собственно, кроме аккумуляторов, существует масса применений этих веществ. Вообще, электролиты, примеры которых мы привели, - это лишь крупинка того многообразия веществ, которые объединены под этим термином. Они окружают нас везде, повсюду. Вот, например, тело человека. Думаете, там нет этих веществ? Очень ошибаетесь. Они находятся везде в нас, а самое большое количество составляют электролиты крови. К ним относятся, например, ионы железа, которые входят в состав гемоглобина и помогают транспортировать кислород к тканям нашего организма. Электролиты крови также играют ключевую роль в регуляции водно-солевого баланса и работе сердца. Эту функцию выполняют ионы калия и натрия (существует даже процесс, происходящий в клетках, который назвается калий-натриевым насосом).

Любые вещества, которые вы в силах растворить хоть немного, - электролиты. И нет такой отрасли промышленности и нашей с вами жизни, где бы они ни применялись. Это не только аккумуляторы в автомобилях и батарейки. Это любое химическое и пищевое производство, военные заводы, швейные фабрики и так далее.

Состав электролита, кстати, бывает разным. Так, можно выделить кислотный и щелочной электролит. Они принципиально отличаются своими свойствами: как мы уже говорили, кислоты являются донорами протонов, а щёлочи - акцепторами. Но со времением состав электролита меняется вследствие потери части вещества концентрация либо уменьшается, либо увеличивается (всё зависит от того, что теряется, вода или электролит).

Мы каждый день сталкиваемся с ними, однако мало кто точно знает определение такого термина, как электролиты. Примеры конкретных веществ мы разобрали, поэтому перейдём к немного более сложным понятиям.

Физические свойства электролитов

Теперь о физике. Самое важное, что нужно понимать при изучении этой темы - как передаётся ток в электролитах. Определяющую роль в этом играют ионы. Эти заряженные частицы могут переносить заряд из одной части раствора в другую. Так, анионы стремятся всегда к положительному электроду, а катионы - к отрицательному. Таким образом, действуя на раствор электрическим током, мы разделяем заряды по разным сторонам системы.

Очень интересна такая физическая характеристика, как плотность. От неё зависят многие свойства обсуждаемых нами соединений. И зачастую всплывает вопрос: "Как поднять плотность электролита?" На самом деле ответ прост: необходимо понизить содержание воды в растворе. Так как плотность электролита большей частью определяется то она большей частью зависит от концентрации последней. Существует два способа осуществить задуманное. Первый достаточно простой: прокипятить электролит, содержащийся в аккумуляторе. Для этого нужно зарядить его так, чтобы температура внутри поднялась чуть выше ста градусов по цельсию. Если этот способ не помогает, не переживайте, существует ещё один: просто-напросто заменить старый электролит новым. Для этого нужно слить старый раствор, прочистить внутренности от остатков серной кислоты дистиллированной водой, а затем залить новую порцию. Как правило, качественные растворы электролита сразу имеют нужную величину концентрации. После замены можете надолго забыть о том, как поднять плотность электролита.

Состав электролита во многом определяет его свойства. Такие характеристики, как электропроводность и плотность, например, сильно зависят от природы растворённого вещества и его концентрации. Существует отдельный вопрос о том, сколько электролита в аккумуляторе может быть. На самом деле его объём напрямую связан с заявленной мощностью изделия. Чем больше серной кислоты внутри аккумулятора, тем он мощнее, т. е. тем большее напряжение способен выдавать.

Где это пригодится?

Если вы автолюбитель или просто увлекаетесь автомобилями, то вы и сами всё понимаете. Наверняка вы даже знаете, как определить, сколько электролита в аккумуляторе находится сейчас. А если вы далеки от автомобилей, то знание свойств этих веществ, их применения и того, как они взаимодействуют друг с другом будет совсем не лишним. Зная это, вы не растеряетесь, если вас попросят сказать, какой электролит в аккумуляторе. Хотя даже если вы не автолюбитель, но у вас есть машина, то знание устройства аккумулятора будет совсем не лишним и поможет вам в ремонте. Будет гораздо легче и дешевле сделать всё самому, нежели ехать в автоцентр.

А чтобы лучше изучить эту тему, мы рекомендуем почитать учебник химии для школы и вузов. Если вы хорошо знаете эту науку и прочитали достаточно учебников, лучшим вариантом будут "Химические источники тока" Варыпаева. Там изложены подробно вся теория работы аккумуляторов, различных батарей и водородных элементов.

Заключение

Мы подошли к концу. Подведём итоги. Выше мы разобрали всё, что касается такого понятия, как электролиты: примеры, теория строения и свойств, функции и применение. Ещё раз стоит сказать, что эти соединения составляют часть нашей жизни, без которой не могли бы существовать наши тела и все сферы промышленности. Вы помните про электролиты крови? Благодаря им мы живём. А что насчёт наших машин? С помощью этих знаний мы сможем исправить любую проблему, связанную с аккумулятором, так как теперь понимаем, как поднять плотность электролита в нём.

Всё рассказать невозможно, да мы и не ставили такой цели. Ведь это далеко не всё, что можно рассказать об этих удивительных веществах.

Сильные и слабые электролиты

В растворах некоторых электролитов диссоциируют лишь часть молекул. Для количественной характеристики силы электролита было введено понятие степени диссоциации. Отношение числа молекул, диссоциированных на ионы, к общему числу молекул растворенного вещества называется степенью диссоциации a.

где С - концентрация продиссоциированных молекул, моль/л;

С 0 - исходная концентрация раствора, моль/л.

По величине степени диссоциации все электролиты делятся на сильные и слабые. К сильным электролитам относятся те, степень диссоциации которых больше 30% (a > 0,3). К ним относятся:

· сильные кислоты (H 2 SO 4 , HNO 3 , HCl, HBr, HI);

· растворимые гидроксиды, кроме NH 4 OH;

· растворимые соли.

Электролитическая диссоциация сильных электролитов протекает необратимо

HNO 3 ® H + + NO - 3 .

Слабые электролиты имеют степень диссоциации меньше 2% (a< 0,02). К ним относятся:

· слабые неорганические кислоты (Н 2 СО 3 , Н 2 S, НNO 2 , HCN, H 2 SiO 3 и др.) и все органические, например, уксусная кислота (CH 3 COOH);

· нерастворимые гидроксиды, а также растворимый гидроксид NH 4 OH;

· нерастворимые соли.

Электролиты с промежуточными значениями степени диссоциации называют электролитами средней силы.

Степень диссоциации (a) зависит от следующих факторов:

от природы электролита, то есть от типа химических связей; диссоциация наиболее легко происходит по месту наиболее полярных связей;

от природы растворителя - чем полярнее последний, тем легче идет в нем процесс диссоциации;

от температуры - повышение температуры усиливает диссоциацию;

от концентрации раствора - при разбавлении раствора диссоциация также увеличивается.

В качестве примера зависимости степени диссоциации от характера химических связей рассмотрим диссоциацию гидросульфата натрия (NaHSO 4), в молекуле которого имеются следующие типы связей: 1-ионная; 2 - полярная ковалентная; 3 - связь между атомами серы и кислорода малополярная. Наиболее легко происходит разрыв по месту ионной связи (1):

Na 1 O 3 O S 3 H 2 O O 1. NaHSO 4 ® Na + + HSO - 4 , 2. затем по месту полярной связи меньшей степени: HSO - 4 ® H + + SO 2 - 4 . 3. кислотный остаток на ионы не диссоциирует.

Степень диссоциации электролита сильно зависит от природы растворителя. Например, HCl сильно диссоциирует в воде, слабее в этаноле C 2 H 5 OH, почти не диссоциирует в бензоле, в котором практически не проводит электрического тока. Растворители с высокой диэлектрической проницаемостью (e) поляризуют молекулы растворенного вещества и образуют с ними сольватированные (гидратированные) ионы. При 25 0 С e(H 2 O) =78,5, e(C 2 H 5 OH) = 24,2, e(C 6 H 6) = 2,27.

В растворах слабых электролитов процесс диссоциации протекает обратимо и, следовательно, к равновесию в растворе между молекулами и ионами применимы законы химического равновесия. Так, для диссоциации уксусной кислоты

CH 3 COOH « CH 3 COO - + H + .

Константа равновесия К с будет определяться как

К с = К д = СCH 3 COO - · С H + / СCH 3 COOH.

Константу равновесия (К с) для процесса диссоциации называют константой диссоциации (К д). Её значение зависит от природы электролита, растворителя и от температуры, но от концентрации электролита в растворе она не зависит. Константа диссоциации представляет собой важную характеристику слабых электролитов, так как она указывает на прочность их молекул в растворе. Чем меньше константа диссоциации, тем слабее диссоциирует электролит и тем устойчивее его молекулы. Учитывая, что степень диссоциации в отличие от константы диссоциации изменяются с концентрацией раствора, необходимо найти связь между К д и a. Если исходную концентрацию раствора принять равной С, а степень диссоциации, соответствующую этой концентрации a, то число продиссоциированных молекул уксусной кислоты будет равна a · С. Так как

СCH 3 COO - = С H + = a · С,

тогда концентрация нераспавшихся молекул уксусной кислоты будет равна (С - a · С) или С(1- a · С). Отсюда

К д = aС · a С /(С - a · С) = a 2 С / (1- a). (1)

Уравнение (1) выражает закон разбавления Оствальда. Для очень слабых электролитов a<<1, то приближенно К @ a 2 С и

a = (К / С). (2)

Как видно из формулы (2), с уменьшением концентрации раствора электролита (при разбавлении) степень диссоциации увеличивается.

Слабые электролиты диссоциируют по ступеням, например:

1 ступень H 2 СO 3 « H + + НСO - 3 ,

2 ступень НСO - 3 « H + + СO 2 - 3 .

Такие электролиты характеризуются несколькими константами - в зависимости от числа ступеней распада на ионы. Для угольной кислоты

К 1 = Сн + · СНСО - 2 / СН 2 СО 3 = 4,45×10 -7 ; К 2 = Сн + · ССО 2- 3 / СНСО - 3 = 4,7 ×10 -11 .

Как видно, распад на ионы угольной кислоты определяется, главным образом, первой стадией, а вторая может проявляться только при большом разбавлении раствора.

Суммарному равновесию H 2 СO 3 « 2H + + СO 2 - 3 отвечает суммарная константа диссоциации

К д = С 2 н + · ССО 2- 3 / СН 2 СО 3 .

Величины К 1 и К 2 связаны друг с другом соотношением

К д = К 1 · К 2 .

Аналогично ступенчато диссоциируют основания многовалентных металлов. Например, двум ступеням диссоциации гидроксида меди

Cu(OH) 2 « CuOH + + OH - ,

CuOH + « Cu 2+ + OH -

отвечают константы диссоциации

К 1 = СCuOH + · СОН - / СCu(OH) 2 и К 2 = Сcu 2+ · СОН - / СCuOH + .

Так как сильные электролиты диссоциированы в растворе нацело, то сам термин константы диссоциации для них лишен содержания.

Диссоциация различных классов электролитов

С точки зрения теории электролитической диссоциации кислотой называется вещество, при диссоциации которого в качестве катиона образуется только гидратированный ион водорода Н 3 О (или просто Н +).

Основанием называется вещество, которое в водном растворе в качестве аниона образует гидроксид-ионы ОН - и никаких других анионов.

Согласно теории Бренстеда, кислота - это донор протонов, а основание - акцептор протонов.

Сила оснований, как сила кислот, зависит от величины константы диссоциации. Чем больше константа диссоциации, тем сильнее электролит.

Существуют гидроксиды, способные вступать во взаимодействие и образовывать соли не только с кислотами, но и с основаниями. Такие гидроксиды называются амфотерными. К нимотносятся Be(OH) 2 , Zn(OH) 2 , Sn(OH) 2 , Pb(OH) 2 , Cr(OH) 3 , Al(OH) 3 . Свойства их обусловлены тем, что они в слабой степени диссоциируют по типу кислот и по типу оснований

H + + RO - « ROH « R + + OН - .

Это равновесие объясняется тем, что прочность связи между металлом и кислородом незначительно отличается от прочности связи между кислородом и водородом. Поэтому при взаимодействии гидроксида бериллия с соляной кислотой получается хлорид бериллия



Be(OH) 2 + HCl = BeCl 2 + 2H 2 O ,

а при взаимодействии с гидроксидом натрия - бериллат натрия

Be(OH) 2 + 2NaOH = Na 2 BeO 2 + 2H 2 O.

Соли можно определить как электролиты, которые в растворе диссоциируют с образованием катионов, отличных от катионов водорода, и анионов, отличных от гидроксид-ионов.

Средние соли , получаемые при полном замещении ионов водорода соответствующих кислот на катионы металла (либоNH + 4), диссоциируют полностью Na 2 SO 4 « 2Na + + SO 2- 4 .

Кислые соли диссоциируют по ступеням

1 ступень NaHSO 4 « Na + + HSO - 4 ,

2 ступень HSO - 4 « H + + SO 2- 4 .

Степенью диссоциации по 1-й ступени больше, чем по 2-й ступени, причем, чем слабее кислота, тем меньше степень диссоциации по 2-й ступени.

Основные соли, получаемые при неполном замещении гидроксид-ионов на кислотные остатки, диссоциируют также по ступеням:

1 ступень (CuОH) 2 SO 4 « 2 CuОH + + SO 2- 4 ,

2 ступень CuОH + « Cu 2+ + OH - .

Основные соли слабых оснований диссоциируют в основном по 1-й ступени.

Комплексные соли, содержащие сложный комплексный ион, сохраняющий свою стабильность при растворении, диссоциируют на комплексный ион и ионы внешней сферы

K 3 « 3K + + 3 - ,

SO 4 « 2+ + SO 2 - 4 .

В центре комплексного иона находится атом - комплексообразователь. Эту роль обычно выполняют ионы металла. Вблизи комплексообразователей расположены (координированы) полярные молекулы или ионы, а иногда и те и другие вместе, их называют лигандами. Комплексообразователь вместе с лигандами составляет внутреннюю сферу комплекса. Ионы, далеко расположенные от комплексообразователя, менее прочно связанные с ним, находятся во внешней среде комплексного соединения. Внутреннюю сферу обычно заключают в квадратные скобки. Число, показывающее число лигандов во внутренней сфере, называется координационным . Химические связи между комплексными и простыми ионами в процессе электролитической диссоциации сравнительно легко разрываются. Связи, приводящие к образованию комплексных ионов, получили название донорно-акцепторных связей.

Ионы внешней сферы легко отщепляются от комплексного иона. Эта диссоциация называется первичной. Обратимый распад внутренней сферы происходит значительно труднее и носит название вторичной диссоциации

Cl « + + Cl - - первичная диссоциация,

+ « Ag + +2 NH 3 - вторичная диссоциация.

вторичная диссоциация, как диссоциация слабого электролита, характеризуется константой нестойкости

К нест. = × 2 / [ + ] = 6,8×10 -8 .

Константы нестойкости (К нест.) различных электролитов является мерой устойчивости комплекса. Чем меньше К нест. , тем устойчивее комплекс.

Так, среди однотипных соединений:

- + + +
К нест = 1,3×10 -3 К нест =6,8×10 -8 К нест =1×10 -13 К нест =1×10 -21

устойчивость комплекса возрастает при переходе от - к + .

Значения константы нестойкости приводят в справочниках по химии. С помощью этих величин можно предсказать течение реакций между комплексными соединениями при сильном различии констант нестойкости реакция пойдет в сторону образования комплекса с меньшей константой нестойкости.

Комплексная соль с малоустойчивым комплексным ионом называется двойной солью . Двойные соли, в отличие от комплексных, диссоциируют на все ионы, входящие в их состав. Например:

KAl(SO 4) 2 « K + + Al 3+ + 2SO 2- 4 ,

NH 4 Fe(SO 4) 2 « NH 4 + + Fe 3+ + 2SO 2- 4 .

, , 21 , , ,
, 25-26 , 27-28 , , 30, , , , , , , , /2003

§ 6.3. Сильные и слабые электролиты

Материал этого раздела частично вам знаком по ранее изученным школьным курсам химии и из предыдущего раздела. Кратко повторим, что вам известно, и познакомимся с новым материалом.

В предыдущем разделе мы обсуждали поведение в водных растворах некоторых солей и органических веществ, полностью распадающихся на ионы в водном растворе.
Имеется ряд простых, но несомненных доказательств того, что некоторые вещества в водных растворах распадаются на частицы. Так, водные растворы серной H 2 SO 4 , азотной HNO 3 , хлорной HClO 4 , хлороводородной (соляной) HCl, уксусной CH 3 COOH и других кислот имеют кислый вкус. В формулах кислот общей частицей является атом водорода, и можно предположить, что он (в виде иона) является причиной одинакового вкуса всех этих столь различных веществ.
Образующиеся при диссоциации в водном растворе ионы водорода придают раствору кислый вкус, поэтому такие вещества и названы кислотами. В природе только ионы водорода имеют кислый вкус. Они создают в водном растворе так называемую кислотную (кислую) среду.

Запомните, когда вы говорите «хлороводород», то имеете в виду газообразное и кристаллическое состояние этого вещества, но для водного раствора следует говорить «раствор хлороводорода», «хлороводородная кислота» или использовать общепринятое название «соляная кислота», хотя состав вещества в любом состоянии выражается одной и той же формулой – НСl.

Водные растворы гидроксидов лития (LiOH), натрия (NаОН), калия (КОН), бария (Ва(ОН) 2), кальция (Са(ОН) 2) и других металлов имеют одинаковый неприятный горько-мыльный вкус и вызывают на коже рук ощущение скольжения. По-видимому, за это свойство ответственны гидроксид-ионы ОН – , входящие в состав таких соединений.
Хлороводородная HCl, бромоводородная HBr и йодоводородная HI кислоты реагируют с цинком одинаково, несмотря на свой различный состав, т. к. в действительности с цинком реагирует не кислота:

Zn + 2НСl = ZnСl 2 + Н2,

а ионы водорода:

Zn + 2H + = Zn 2+ + Н 2 ,

и образуются газообразный водород и ионы цинка.
Смешивание некоторых растворов солей, например хлорида калия KCl и нитрата натрия NaNO 3 , не сопровождается заметным тепловым эффектом, хотя после выпаривания раствора образуется смесь кристаллов четырех веществ: исходных – хлорида калия и нитрата натрия – и новых – нитрата калия КNO 3 и хлорида натрия NaCl. Можно предположить, что в растворе две исходные соли полностью распадаются на ионы, которые при его выпаривании образуют четыре кристаллических вещества:

Сопоставляя эти сведения с электропроводностью водных растворов кислот, гидроксидов и солей и с рядом других положений, С.А.Аррениус в 1887 г. выдвинул гипотезу электролитической диссоциации, согласно которой молекулы кислот, гидроксидов и солей при растворении их в воде диссоциируют на ионы.
Изучение продуктов электролиза позволяет приписать ионам положительные или отрицательные заряды. Очевидно, если кислота, например азотная НNO 3 , диссоциирует, предположим, на два иона и при электролизе водного раствора на катоде (отрицательно заряженный электрод) выделяется водород, то, следовательно, в растворе имеются положительно заряженные ионы водорода Н + . Тогда уравнение диссоциации следует записать так:

НNO 3 = Н + + .

Электролитическая диссоциация – полный или частичный распад соединения при его растворении в воде на ионы в результате взаимодействия с молекулой воды (или другого растворителя).
Электролиты – кислоты, основания или соли, водные растворы которых проводят электрический ток в результате диссоциации.
Вещества, не диссоциирующие в водном растворе на ионы и растворы которых не проводят электрический ток, называются неэлектролитами .
Диссоциация электролитов количественно характеризуется степенью диссоциации – отношением числа распавшихся на ионы «молекул» (формульных единиц) к общему числу «молекул» растворенного вещества. Степень диссоциации обозначается греческой буквой . Например, если из каждых 100 «молекул» растворенного вещества 80 распадаются на ионы, то степень диссоциации растворенного вещества равна: = 80/100 = 0,8, или 80%.
По способности к диссоциации (или, как говорят, «по силе») электролиты разделяют на сильные , средние и слабые . По степени диссоциации к сильным электролитам относят те из них, для растворов которых > 30%, к слабым – < 3%, к средним – 3% 30%. Сила электролита – величина, зависящая от концентрации вещества, температуры, природы растворителя и др.
В случае водных растворов к сильным электролитам ( > 30%) относят перечисленные ниже группы соединений.
1 . Многие неорганические кислоты, например хлороводородная НCl, азотная HNO 3 , серная H 2 SО 4 в разбавленных растворах. Самая сильная неорганическая кислота – хлорная НСlО 4 .
Сила некислородных кислот возрастает в ряду однотипных соединений при переходе вниз по подгруппе кислотообразующих элементов:

HCl – HBr – HI.

Фтороводородная (плавиковая) кислота HF растворяет стекло, но это вовсе не говорит о ее силе. Эта кислота из бескислородных галогенсодержащих относится к кислотам средней силы из-за высокой энергии связи Н–F, способности молекул HF к объединению (ассоциации) благодаря сильным водородным связям, взаимодействия ионов F – с молекулами НF (водородные связи) с образованием ионов и других более сложных частиц. В результате концентрация ионов водорода в водном растворе этой кислоты оказывается значительно пониженной, поэтому фтороводородную кислоту считают средней силы.
Фтороводород реагирует с диоксидом кремния, входящим в состав стекла, по уравнению:

SiO 2 + 4HF = SiF 4 + 2H 2 O.

Фтороводородную кислоту нельзя хранить в стеклянных сосудах. Для этого используют сосуды из свинца, некоторых пластмасс и стекла, стенки которых покрыты изнутри толстым слоем парафина. Если для «травления» стекла использовать газообразный фтороводород, то поверхность стекла становится матовой, что используется для нанесения на стекло надписей и различных рисунков. «Травление» стекла водным раствором фтороводородной кислоты приводит к разъеданию поверхности стекла, которая остается прозрачной. В продаже обычно бывает 40%-й раствор плавиковой кислоты.

Сила однотипных кислородных кислот изменяется в противоположном направлении, например йодная кислота НIО 4 слабее хлорной кислоты НСlО 4 .
Если элемент образует несколько кислородных кислот, то наибольшей силой обладает кислота, в которой кислотообразующий элемент имеет самую высокую валентность. Так, в ряду кислот НСlО (хлорноватистая) – НСlО 2 (хлористая) – НСlО 3 (хлорноватая) – НСlО 4 (хлорная) последняя наиболее сильная.

Один объем воды растворяет около двух объемов хлора. Хлор (примерно половина его) взаимодействует с водой:

Cl 2 + H 2 O = HCl + HСlO.

Хлороводородная кислота является сильной, в ее водном растворе практически нет молекул HCl. Правильнее уравнение реакции записать так:

Cl 2 + H 2 O = H + + Cl – + HClO – 25 кДж/моль.

Образующийся раствор называют хлорной водой.
Хлорноватистая кислота – быстродействующий окислитель, поэтому ее применяют для отбеливания тканей.

2 . Гидроксиды элементов главных подгрупп I и II групп периодической системы: LiОН, NaОН, КОН, Са(ОН) 2 и др. При переходе вниз по подгруппе по мере усиления металлических свойств элемента сила гидроксидов возрастает. Растворимые гидроксиды главной подгруппы I группы элементов относят к щелочам.

Щелочами называют растворимые в воде основания. К ним относят также гидроксиды элементов главной подгруппы II группы (щелочно-земельные металлы) и гидроксид аммония (водный раствор аммиака). Иногда щелочами считают те гидроксиды, которые в водном растворе создают высокую концентрацию гидроксид-ионов. В устаревшей литературе вы можете встретить в числе щелочей карбонаты калия К 2 СО 3 (поташ) и натрия Na 2 CO 3 (сода), гидрокарбонат натрия NaHCO 3 (питьевая сода), буру Na 2 B 4 O 7 , гидросульфиды натрия NaHS и калия KHS и др.

Гидроксид кальция Са(ОН) 2 как сильный электролит диссоциирует в одну ступень:

Са(ОН) 2 = Са 2+ + 2ОН – .

3 . Почти все соли. Соль, если это сильный электролит, диссоциирует в одну ступень, например хлорид железа:

FeCl 3 = Fe 3+ + 3Cl – .

В случае водных растворов к слабым электролитам ( < 3%) относят перечисленные ниже соединения.

1 . Вода H 2 O – важнейший электролит.

2 . Некоторые неорганические и почти все органические кислоты: H 2 S (сероводородная), H 2 SO 3 (сернистая), H 2 CO 3 (угольная), HCN (циановодородная), Н 3 РО 4 (фосфорная, ортофосфорная), H 2 SiO 3 (кремниевая), H 3 BO 3 (борная, ортоборная), СН 3 СООН (уксусная) и др.
Заметим, что угольная кислота в формуле H 2 CO 3 не существует. При растворении углекислого газа СО 2 в воде образуется его гидрат СО 2 Н 2 О, который мы для удобства расчетов записываем формулой H 2 CO 3 , и уравнение реакции диссоциации выглядит так:

Диссоциация слабой угольной кислоты проходит в две ступени. Образующийся гидрокарбонат-ион также ведет себя как слабый электролит.
Точно так же ступенчато диссоциируют и другие многоосновные кислоты: Н 3 РО 4 (фосфорная), H 2 SiO 3 (кремниевая), H 3 BO 3 (борная). В водном растворе диссоциация практически проходит лишь по первой ступени. Как осуществить диссоциацию по последней ступени?
3 . Гидроксиды многих элементов, например Аl(OH) 3 , Cu(OH) 2 , Fe(OH) 2 , Fe(OH) 3 и др.
Все эти гидроксиды диссоциируют в водном растворе ступенчато, например гидроксид железа
Fe(OH) 3:

В водном растворе диссоциация проходит практически только по первой ступени. Как сместить равновесие в сторону образования ионов Fe 3+ ?
Осно"вные свойства гидроксидов одного и того же элемента усиливаются с уменьшением валентности элемента. Так, осно"вные свойства дигидроксида железа Fe(OH) 2 выражены сильнее, чем у тригидроксида Fe(OH) 3 . Это утверждение равносильно тому, что кислотные свойства Fe(OH) 3 проявляются сильнее, чем у Fe(OH) 2 .
4 . Гидроксид аммония NH 4 OH.
При растворении газообразного аммиака NH 3 в воде получается раствор, который очень слабо проводит электрический ток и имеет горько-мыльный вкус. Среда раствора осно"вная, или щелочная. Объясняется такое поведение аммиака следующим образом. При растворении аммиака в воде образуется гидрат аммиака NH 3 Н 2 О, которому условно мы приписываем формулу несуществующего гидроксида аммония NH 4 OH, считая, что это соединение диссоциирует с образованием иона аммония и гидроксид-иона ОН – :

NH 4 OH = + ОН – .

5 . Некоторые соли: хлорид цинка ZnCl 2 , тиоцианат железа Fe(NСS) 3 , цианид ртути Hg(CN) 2 и др. Эти соли диссоциируют ступенчато.

К электролитам средней силы некоторые относят фосфорную кислоту Н 3 РО 4 . Мы будем считать фосфорную кислоту слабым электролитом и записывать три ступени ее диссоциации. Серная кислота в концентрированных растворах ведет себя как электролит средней силы, а в очень концентрированных растворах – как слабый электролит. Мы далее будем считать серную кислоту сильным электролитом и записывать уравнение ее диссоциации в одну ступень.

Соли, их свойства, гидролиз

Ученица 8 класс Б школы № 182

Петрова Полина

Учитель химии:

Харина Екатерина Алексеевна

МОСКВА 2009

В быту мы привыкли иметь дело лишь с одной солью – поваренной, т.е. хлоридом натрия NaCl. Однако в химии солями называют целый класс соединений. Соли можно рассматривать как продукты замещения водорода в кислоте на металл. Поваренную соль, например, можно получить из соляной кислоты по реакции замещения:

2Na + 2HCl = 2NaCl + H 2 .

кислота соль

Если вместо натрия взять алюминий, образуется другая соль – хлорид алюминия:

2Al + 6HCl = 2AlCl 3 + 3H 2

Соли – это сложные вещества, состоящие из атомов металлов и кислотных остатков. Они являются продуктами полного или частичного замещения водорода в кислоте на металл или гидроксильной группы в основании на кислотный остаток. Например, если в серной кислоте H 2 SO 4 заместить на калий один атом водорода, получим соль KHSO 4 , а если два – K 2 SO 4 .

Различают несколько типов солей.

Типы солей Определение Примеры солей
Средние Продукт полного замещения водорода кислоты на металл. Ни атомов Н, ни ОН-групп не содержат. Na 2 SO 4 сульфат натрия CuCl 2 хлорид меди (II) Ca 3 (PO 4) 2 фосфат кальция Na 2 CO 3 карбонат натрия (кальцинированная сода)
Кислые Продукт неполного замещения водорода кислоты на металл. Содержат в своем составе атомы водорода. (Они образованны только многоосновными кислотами) CaHPO 4 гидрофосфат кальция Ca(H 2 PO 4) 2 дигидрофосфат кальция NaHCO 3 гидрокарбонат натрия (питьевая сода)
Основные Продукт неполного замещения гидроксогрупп основания на кислотный остаток. Включают ОН-группы. (Образованны только многокислотными основаниями) Cu(OH)Cl гидроксохлорид меди (II) Ca 5 (PO 4) 3 (OH) гидроксофосфат кальция (CuOH) 2 CO 3 гидроксокарбонат меди (II) (малахит)
Смешанные Соли двух кислот Ca(OCl)Cl – хлорная известь
Двойные Соли двух металлов K 2 NaPO 4 – ортофосфат дикалия-натрия
Кристаллогидраты Содержат кристаллизационную воду. При нагревании они обезвоживаются – теряют воду, превращаясь в безводную соль. CuSO 4 . 5H 2 O – пятиводный сульфат меди(II) (медный купорос) Na 2 CO 3 . 10H 2 O – десятиводный карбонат натрия (сода)

Способы получения солей.

1. Соли можно получить, действуя кислотами на металлы, основные оксиды и основания:

Zn + 2HCl ZnCl 2 + H 2

хлорид цинка

3H 2 SO 4 + Fe 2 O 3 Fe 2 (SO 4) 3 + 3H 2 O

сульфат железа (III)

3HNO 3 + Cr(OH) 3 Cr(NO 3) 3 + 3H 2 O

нитрат хрома (III)

2. Соли образуются при реакции кислотных оксидов со щелочами, а также кислотных оксидов с основными оксидами:

N 2 O 5 + Ca(OH) 2 Ca(NO 3) 2 + H 2 O

нитрат кальция

SiO 2 + CaO CaSiO 3

силикат кальция

3. Соли можно получить при взаимодействии солей с кислотами, щелочами, металлами, нелетучими кислотными оксидами и другими солями. Такие реакции протекают при условии выделения газа, выпадения осадка, выделения оксида более слабой кислоты или выделения летучего оксида.

Ca 3 (PO4) 2 + 3H 2 SO 4 3CaSO 4 + 2H 3 PO 4

ортофосфат кальция сульфат кальция

Fe 2 (SO 4) 3 + 6NaOH 2Fe(OH) 3 + 3Na 2 SO 4

сульфат железа (III) сульфат натрия

CuSO 4 + Fe FeSO 4 + Cu

сульфат меди (II) сульфат железа (II)

CaCO 3 + SiO 2 CaSiO 3 + CO 2

карбонат кальция силикат кальция

Al 2 (SO 4) 3 + 3BaCl 2 3BaSO 4 + 2AlCl 3



сульфат хлорид сульфат хлорид

алюминия бария бария алюминия

4. Соли бескислородных кислот образуются при взаимодействии металлов с неметаллами:

2Fe + 3Cl 2 2FeCl 3

хлорид железа (III)

Физические свойства.

Соли – твердые вещества различного цвета. Растворимость в воде их различна. Растворимы все соли азотной и уксусной кислот, а также соли натрия и калия. О растворимости в воде других солей можно узнать из таблицы растворимости.

Химические свойства.

1) Соли реагируют с металлами.

Так как эти реакции протекают в водных растворах, то для опытов нельзя применять Li, Na, K, Ca, Ba и другие активные металлы, которые при обычных условиях реагируют с водой, либо проводить реакции в расплаве.

CuSO 4 + Zn ZnSO 4 + Cu

Pb(NO 3) 2 + Zn Zn(NO 3) 2 + Pb

2) Соли реагируют с кислотами. Эти реакции протекают, когда более сильная кислота вытесняет более слабую, при этом выделяется газ или выпадает осадок.

При проведении этих реакций обычно берут сухую соль и действуют концентрированной кислотой.

BaCl 2 + H 2 SO 4 BaSO 4 + 2HCl

Na 2 SiO 3 + 2HCl 2NaCl + H 2 SiO 3

3) Соли реагируют со щелочами в водных растворах.

Это способ получения нерастворимых оснований и щелочей.

FeCl 3 (p-p) + 3NaOH(p-p) Fe(OH) 3 + 3NaCl

CuSO 4 (p-p) + 2NaOH (p-p) Na 2 SO 4 + Cu(OH) 2

Na 2 SO 4 + Ba(OH) 2 BaSO 4 + 2NaOH

4) Соли реагируют с солями.

Реакции протекают в растворах и используются для получения практически нерастворимых солей.

AgNO 3 + KBr AgBr + KNO 3

CaCl 2 + Na 2 CO 3 CaCO 3 + 2NaCl

5) Некоторые соли при нагревании разлагаются.

Характерным примером такой реакции является обжиг известняка, основной составной частью которого является карбонат кальция:

CaCO 3 CaO + CO2 карбонат кальция

1. Некоторые соли способны кристаллизироваться с образованием кристаллогидратов.

Сульфат меди (II) CuSO 4 – кристаллическое вещество белого цвета. При его растворении в воде происходит разогревание и образуется раствор голубого цвета. Выделение теплоты и изменение цвета – это признаки химической реакции. При выпаривании раствора выделяется кристаллогидрат CuSO 4 . 5H 2 O (медный купорос) . Образование этого вещества свидетельствует о том, что сульфат меди (II) реагирует с водой:

CuSO 4 + 5H 2 O CuSO 4 . 5H 2 O + Q

белого цвета сине-голубого цвета

Применение солей.

Большинство солей широко используется в промышленности и в быту. Например, хлорид натрия NaCl, или поваренная соль, незаменим в приготовлении пищи. В промышленности хлорид натрия используется для получения гидроксида натрия, соды NaHCO 3 , хлора, натрия. Соли азотной и ортофосфорной кислот в основном являются минеральными удобрениями. Например, нитрат калия KNO 3 – калийная селитра. Она также входит в состав пороха и других пиротехнических смесей. Соли применяются для получения металлов, кислот, в производстве стекла. Многие средства защиты растений от болезней, вредителей, некоторые лекарственные вещества также относятся к классу солей. Перманганат калия KMnO 4 часто называют марганцовкой. В качестве строительного материала используются известняки и гипс – CaSO 4 . 2H 2 O, который также применяется в медицине.

Растворы и растворимость.

Как уже указывалось ранее, растворимость является важным свойством солей. Растворимость - способность вещества образовывать с другим веществом однородную, устойчивую систему переменного состава, состоящую из двух или большего числа компонентов.

Растворы – это однородные системы, состоящие из молекул растворителя и частиц растворенного вещества.

Так, например, раствор поваренной соли состоит из растворителя – воды, растворенного вещества – ионов Na + ,Cl - .

Ионы (от греч. ión - идущий), электрически заряженные частицы, образующиеся при потере или присоединении электронов (или других заряженных частиц) атомами или группами атомов. Понятие и термин «ион» ввёл в 1834 М. Фарадей, который, изучая действие электрического тока на водные растворы кислот, щелочей и солей, предположил, что электропроводность таких растворов обусловлена движением ионов. Положительно заряженные ионы, движущиеся в растворе к отрицательному полюсу (катоду), Фарадей назвал катионами, а отрицательно заряженные, движущиеся к положительному полюсу (аноду), - анионами.

По степени растворимости в воде вещества делятся на три группы:

1) Хорошо растворимые;

2) Малорастворимые;

3) Практически нерастворимые.

Многие соли хорошо растворимы в воде. При решении вопроса о растворимости в воде других солей придется пользоваться таблицей растворимости.

Хорошо известно, что одни вещества в растворенном или расплавленном виде проводят электрический ток, другие в тех же условиях ток не проводят.

Вещества, распадающиеся на ионы в растворах или расплавах и поэтому проводящие электрический ток, называют электролитами .

Вещества, которые в тех же условиях на ионы не распадаются и электрический ток не проводят, называются неэлектролитами .

К электролитам относятся кислоты, основания и почти все соли. Сами электролиты электрический ток не проводят. В растворах и расплавах они распадаются на ионы, благодаря чему и протекает ток.

Распад электролитов на ионы при растворении их в воде называется электролитической диссоциацией . Ее содержание сводится к трем следующим положениям:

1) Электролиты при растворении в воде распадаются (диссоциируют) на ионы – положительные и отрицательные.

2) Под действием электрического тока ионы приобретают направленное движение: положительно заряженные ионы движутся к катоду и называются – катионы, а отрицательно заряженные ионы движутся к аноду и называются – анионами.

3) Диссоциация – обратимый процесс: параллельно с распадом молекул на ионы (диссоциацией) протекает процесс соединения ионов (ассоциация).

обратимость

Сильные и слабые электролиты.

Для количественной характеристики способности электролита распадаться на ионы введено понятие степени диссоциации (α), т. Е. Отношения числа молекул, распавшихся на ионы, кобщему числу молекул. Например, α = 1 говорит о том, что электролит полностью распался на ионы, а α = 0,2 означает, что продиссоциировала лишь каждая пятая из его молекул. При разбавлении концентрированного раствора, а также при нагревании его электропроводность повышается, так как возрастает степень диссоциации.

В зависимости от величины α электролиты условно делятся на сильные (диссоциируют практически нацело, (α 0,95) средней силы (0,95

Сильными электролитами являются многие минеральные кислоты (HCl, HBr, HI, H 2 SO 4 , HNO 3 и др.), щелочи (NaOH, KOH, Ca(OH) 2 и др.), почти все соли. К слабым принадлежат растворы некоторых минеральных кислот (H 2 S, H 2 SO 3 , H 2 CO 3 , HCN, HClO), многие органические кислоты (например, уксусная CH 3 COOH), водный раствор аммиака (NH 3 . 2 O), вода, некоторые соли ртути (HgCl 2). К электролитам средней силы часто относят плавиковую HF, ортофосфорную H 3 PO 4 и азотистую HNO 2 кислоты.

Гидролиз солей.

Термин « гидролиз » произошел от греческих слов hidor (вода) и lysis (разложение). Под гидролизом обычно понимают обменную реакцию между веществом и водой. Гидролитические процессы чрезвычайно распространены в окружающей нас природе (как живой, так и неживой), а также широко используются человеком в современных производственных и бытовых технологиях.

Гидролизом соли называется реакция взаимодействия ионов, входящих в состав соли, с водой, которая приводит к образованию слабого электролита и сопровождается изменением среды раствора.

Гидролизу подвергаются три типа солей:

а) соли, образованные слабым основанием и сильной кислотой (CuCl 2 , NH 4 Cl, Fe 2 (SO 4) 3 - протекает гидролиз по катиону)

NH 4 + + H 2 O NH 3 + H 3 O +

NH 4 Cl + H 2 O NH 3 . H 2 O + HCl

Реакция среды – кислая.

б) соли, образованные сильным основанием и слабой кислотой (К 2 CO 3 , Na 2 S - протекает гидролиз по аниону)

SiO 3 2- + 2H 2 O H 2 SiO 3 + 2OH -

K 2 SiO 3 +2H 2 O H 2 SiO 3 +2KOH

Реакция среды – щелочная.

в) соли, образованные слабым основанием и слабой кислотой (NH 4) 2 CO 3 , Fe 2 (CO 3) 3 – протекает гидролиз по катиону и по аниону.

2NH 4 + + CO 3 2- + 2H 2 O 2NH 3 . H 2 O + H 2 CO 3

(NH 4) 2 CO 3 + H 2 O 2NH 3 . H 2 O + H 2 CO 3

Часто реакция среды – нейтральная.

г) соли образованные сильным основанием и сильной кислотой (NaCl, Ba(NO 3) 2) гидролизу не подвержены.

В ряде случаев гидролиз протекает необратимо (как говорят, идет до конца). Так при смешении растворов карбоната натрия и сульфата меди выпадает голубой осадок гидратированной основной соли, которая при нагревании теряет часть кристаллизационной воды и приобретает зеленый цвет – превращается в безводный основный карбонат меди – малахит:

2CuSO 4 + 2Na 2 CO 3 + H 2 O (CuOH) 2 CO 3 + 2Na 2 SO 4 + CO 2

При смешении растворов сульфида натрия и хлорида алюминия гидролиз также идет до конца:

2AlCl 3 + 3Na 2 S + 6H 2 O 2Al(OH) 3 + 3H 2 S + 6NaCl

Поэтому Al 2 S 3 нельзя выделить из водного раствора. Эту соль получают из простых веществ.