Каковы основные свойства генетического кода. Генетический код: свойства и функции

  • 15.10.2019
Нуклеотиды ДНК и РНК
  1. Пуриновые: аденин, гуанин
  2. Пиримидиновые: цитозин, тимин (урацил)

Кодон - триплет нуклеотидов, кодирующих определенную аминокислоту.

таб. 1. Аминокислоты, которые обычно встречаются в белках
Название Сокращенное обозначение
1. Аланин Ala
2. Аргинин Arg
3. Аспарагин Asn
4. Аспарагиновая кислота Asp
5. Цистеин Cys
6. Глутаминовая кислота Glu
7. Глутамин Gln
8. Глицин Gly
9. Гистидин His
10. Изолейцин Ile
11. Лейцин Leu
12. Лизин Lys
13. Метионин Met
14. Фенилаланин Phe
15. Пролин Pro
16. Серии Ser
17. Треонин Thr
18. Триптофан Trp
19. Тирозин Tyr
20. Валин Val

Генетический код, который еще называют аминокислотным кодом, - это система записи информации о последовательности расположения аминокислот в белке с помощью последовательности расположения нуклеотидных остатков в ДНК, которые содержат одно из 4-х азотистых оснований: аденин (А), гуанин (G), цитозин (C) и тимин (Т). Однако, поскольку двунитчатая спираль ДНК не принимает непосредственного участия в синтезе белка, который кодируется одной из этих нитей (т.е. РНК), то код записывается на языке РНК, в котором вместо тимина входит урацил (U). По этой же причине принято говорить, что код - это последовательность нуклеотидов, а не пар нуклеотидов.

Генетический код представлен определенными кодовыми словами, - кодонами.

Первое кодовое слово было расшифровано Ниренбергом и Маттеи в 1961 г. Они получили из кишечной палочки экстракт, содержащий рибосомы и прочие факторы, необходимые для синтеза белка. Получилась бесклеточная система для синтеза белка, которая могла бы осуществлять сборку белка из аминокислот, если в среду добавить необходимую мРНК. Добавив в среду синтетическую РНК, состоящую только из урацилов, они обнаружили, что образовался белок, состоящий только из фенилаланина (полифенилаланин). Так было установлено, что триплет нуклеотидов УУУ (кодон) соответствует фенилаланину. В течение последующих 5-6 лет были определены все кодоны генетического кода.

Генетический код - своеобразный словарь, переводящий текст, записанный с помощью четырех нуклеотидов, в белковый текст, записанный с помощью 20 аминокислот. Остальные аминокислоты, встречающиеся в белке, являются модификациями одной из 20 аминокислот.

Свойства генетического кода

Генетический код имеет следующие свойства.

  1. Триплетность - каждой аминокислоте соответствует тройка нуклеотидов. Легко подсчитать, что существуют 4 3 = 64 кодона. Из них 61 является смысловым и 3 - бессмысленными (терминирующими, stop-кодонами).
  2. Непрерывность (нет разделительных знаков между нуклеотидами) - отсутствие внутригенных знаков препинания;

    Внутри гена каждый нуклеотид входит в состав значащего кодона. В 1961г. Сеймур Бензер и Френсис Крик экспериментально доказали триплетность кода и его непрерывность (компактость) [показать]

    Суть эксперимента: "+" мутация - вставка одного нуклеотида. "-" мутация - выпадение одного нуклеотида.

    Одиночная мутация ("+" или "-") в начале гена или двойная мутация ("+" или "-") - портит весь ген.

    Тройная мутация ("+" или "-") в начале гена портит лишь часть гена.

    Четверная "+" или "-" мутация опять портит весь ген.

    Эксперимент был проведен на двух рядом расположенных фаговых генах и показал, что

    1. код триплетен и внутри гена нет знаков препинания
    2. между генами есть знаки препинания
  3. Наличие межгенных знаков препинания - наличие среди триплетов инициирующих кодонов (с них начинается биосинтез белка), кодонов - терминаторов (обозначают конец биосинтеза белка);

    Условно к знакам препинания относится и кодон AUG - первый после лидерной последовательности. Он выполняет функцию заглавной буквы. В этой позиции он кодирует формилметионин (у прокариот).

    В конце каждого гена, кодирующего полипептид, находится, по меньшей мере, один из 3-х терминирующих кодонов, или стоп-сигналов: UAA, UAG, UGA. Они терминируют трансляцию.

  4. Колинеарность - соответствие линейной последовательности кодонов мРНК и аминокислот в белке.
  5. Специфичность - каждой аминокислоте соответствуют только определенные кодоны, которые не могут использоваться для другой аминокислоты.
  6. Однонаправленность - кодоны считываются в одном направлении - от первого нуклеотида к последующим
  7. Вырожденность, или избыточность ,- одну аминокислоту может кодировать несколько триплетов (аминокислот – 20, возможных триплетов – 64, 61 из них смысловой, т. е. в среднем каждой аминокислоте соответствует около 3 кодонов); исключение составляет метионин (Met) и триптофан (Trp).

    Причина вырожденности кода состоит в том, что главную смысловую нагрузку несут два первых нуклеотида в триплете, а третий не так важен. Отсюда правило вырожденности кода : если два кодона имеют два одинаковых первых нуклеотида, а их третьи нуклеотиды принадлежат к одному классу (пуриновому или пиримидиновому), то они кодируют одну и ту же аминокислоту.

    Однако из этого идеального правила есть два исключения. Это кодон АUА, который должен соответствовать не изолейцину, а метионину и кодон UGА, который является терминирующим, тогда как должен соответствовать триптофану. Вырожденность кода имеет, очевидно, приспособительное значение.

  8. Универсальность - все перечисленные выше свойства генетического кода характерны для всех живых организмов.
    Кодон Универсальный код Митохондриальные коды
    Позвоночные Беспозвоночные Дрожжи Растения
    UGA STOP Trp Trp Trp STOP
    AUA Ile Met Met Met Ile
    CUA Leu Leu Leu Thr Leu
    AGA Arg STOP Ser Arg Arg
    AGG Arg STOP Ser Arg Arg

    В последнее время принцип универсальности кода был поколеблен в связи c открытием Береллом в 1979 г. идеального кода митохондрий человека, в котором выполняется правило вырожденности кода. В коде митохондрий кодон UGA соответствует триптофану, а AUA - метионину, как того требует правило вырожденности кода.

    Возможно, в начале эволюции у всех простейших организмов был такой же код, как и у митохондрий, а затем он претерпел небольшие отклонения.

  9. Неперекрываемость - каждый из триплетов генетического текста независим друг от друга, один нуклеотид входит в состав только одного триплета; На рис. показана разница между перекрывающимся и неперекрывающимся кодом.

    В 1976г. была секвенирована ДНК фага φХ174. У него одноцепочечная кольцевая ДНК, состоящая из 5375 нуклеотидов. Было известно, что фаг кодирует 9 белков. Для 6 из них были определены гены, располагающиеся друг за другом.

    Выяснилось, что есть перекрывание. Ген Е полностью находится внутри гена D. Его инициирующий кодон появляется в результате сдвига считывания на один нуклеотид. Ген J начинается там, где кончается ген D. Инициирующий кодон гена J перекрывается с терминирующим кодоном гена D в результате сдвига на два нуклеотида. Конструкция называется "сдвиг рамки считывания" на число нуклеотидов, некратное трем. На сегодняшний день перекрывание показано только для нескольких фагов.

  10. Помехоустойчивость - отношение числа консервативных замен к числу радикальных замен.

    Мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными. Мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными.

    Так как одна и та же аминокислота может кодироваться разными триплетами, то некоторые замены в триплетах не приводят к замене кодируемой аминокислоты (например UUU -> UUC оставляет фенилаланин). Некоторые замены меняют аминокислоту на другую из того же класса (неполярный, полярный, основной, кислотный), остальные замены меняют и класс аминокислоты.

    В каждом триплете можно провести 9 однократных замен, т.е. выбрать, какую из позиций меняем - можно тремя способами (1-я или 2-я или 3-я), причем выбранную букву (нуклеотид) можно поменять на 4-1=3 других буквы (нуклеотида). Общее количество возможных замен нуклеотидов - 61 по 9 = 549.

    Прямым подсчетом по таблице генетического кода можно убедиться, что из них: 23 замены нуклеотидов приводят к появлению кодонов - терминаторов трансляции. 134 замены не меняют кодируемую аминокислоту. 230 замен не меняют класс кодируемой аминокислоты. 162 замены приводят к смене класса аминокислоты, т.е. являются радикальными. Из 183 замен 3-его нуклеотида, 7 приводят к появлению терминаторов трансляции, а 176 - консервативны. Из 183 замен 1-ого нуклеотида, 9 приводят к появлению терминаторов, 114 - консервативны и 60 - радикальны. Из 183 замен 2-го нуклеотида, 7 приводят к появлению терминаторов, 74 - консервативны, 102 - радикальны.


ГЕНЕТИЧЕСКИЙ КОД, система записи наследственной информации в виде последовательности оснований нуклеотидов в молекулах ДНК (у некоторых вирусов - РНК), определяющая первичную структуру (расположение аминокислотных остатков) в молекулах белков (полипептидов). Проблема генетического кода была сформулирована после доказательства генетической роли ДНК (американские микробиологи О. Эйвери, К. Мак-Леод, М. Маккарти, 1944) и расшифровки её структуры (Дж. Уотсон, Ф. Крик, 1953), после установления того, что гены определяют структуру и функции ферментов (принцип «один ген - один фермент» Дж. Бидла и Э. Тейтема, 1941) и что существует зависимость пространственной структуры и активности белка от его первичной структуры (Ф. Сенгер, 1955). Вопрос о том, как комбинации из 4 оснований нуклеиновых кислот определяют чередование 20 обычных аминокислотных остатков в полипептидах, впервые поставил Г. Гамов в 1954 году.

На основании эксперимента, в котором исследовали взаимодействия вставок и выпадений пары нуклеотидов, в одном из генов бактериофага Т4 Ф. Крик и другие учёные в 1961 году определили общие свойства генетического кода: триплетность, т. е. каждому аминокислотному остатку в полипептидной цепи соответствует набор из трёх оснований (триплет, или кодон) в ДНК гена; считывание кодонов в пределах гена идёт с фиксированной точки, в одном направлении и «без запятых», то есть кодоны не отделены какими-либо знаками друг от друга; вырожденность, или избыточность, - один и тот же аминокислотный остаток могут кодировать несколько кодонов (кодоны-синонимы). Авторы предположили, что кодоны не перекрываются (каждое основание принадлежит только одному кодону). Прямое изучение кодирующей способности триплетов было продолжено с использованием бесклеточной системы синтеза белка под контролем синтетической матричной РНК (мРНК). К 1965 году генетический код был полностью расшифрован в работах С. Очоа, М. Ниренберга и Х. Г. Кораны. Раскрытие тайны генетического кода явилось одним из выдающихся достижений биологии в 20 веке.

Реализация генетического кода в клетке происходит в ходе двух матричных процессов - транскрипции и трансляции. Посредником между геном и белком является мРНК, образующаяся в процессе транскрипции на одной из нитей ДНК. При этом последовательность оснований ДНК, несущая информацию о первичной структуре белка, «переписывается» в виде последовательности оснований мРНК. Затем в ходе трансляции на рибосомах последовательность нуклеотидов мРНК считывается транспортными РНК (тРНК). Последние имеют акцепторный конец, к которому присоединяется аминокислотный остаток, и адаптерный конец, или антикодон-триплет, который узнаёт соответствующий кодон мРНК. Взаимодействие кодона и анти-кодона происходит на основании комплементарного спаривания оснований: Аденин (А) - Урацил (U), Гуанин (G) - Цитозин (С); при этом последовательность оснований мРНК переводится в аминокислотную последовательность синтезирующегося белка. Различные организмы используют для одной и той же аминокислоты разные кодоны-синонимы с разной частотой. Считывание мРНК, кодирующей полипептидную цепь, начинается (инициируется) с кодона AUG, соответствующего аминокислоте метионину. Реже у прокариот инициирующими кодонами служат GUG (валин), UUG (лейцин), AUU (изолейцин), у эукариот - UUG (лейцин), AUA (изолейцин), ACG (треонин), CUG (лейцин). Это задаёт так называемую рамку, или фазу, считывания при трансляции, то есть далее всю нуклеотидную последовательность мРНК считывают триплет за триплетом тРНК до тех пор, пока на мРНК не встретится любой из трёх кодонов-терминаторов, часто называемых стоп-кодонами: UAA, UAG, UGA (таблица). Считывание этих триплетов приводит к завершению синтеза полипептидной цепи.

Кодоны AUG и стоп-кодоны стоят соответственно в начале и в конце участков мРНК, кодирующих полипептиды.

Генетический кода квазиуниверсален. Это значит, что существуют небольшие вариации в значении некоторых кодонов у разных объектов, и это касается, прежде всего, кодонов-терминаторов, которые могут быть значащими; например, в митохондриях некоторых эукариот и у микоплазм UGA кодирует триптофан. Кроме того, в некоторых мРНК бактерий и эукариот UGA кодирует необычную аминокислоту - селеноцистеин, а UAG у одной из архебактерий - пирролизин.

Существует точка зрения, согласно которой генетический кода возник случайно (гипотеза «замороженного случая»). Более вероятно, что он эволюционировал. В пользу такого предположения говорит существование более простого и, по-видимому, более древнего варианта кода, который считывается в митохондриях согласно правилу «два из трёх», когда аминокислоту определяют только два из трёх оснований в триплете.

Лит.: Crick F. Н. а. о. General nature of the genetic code for proteins // Nature. 1961. Vol. 192; The genetic code. N. Y., 1966; Ичас М. Биологический код. М., 1971; Инге-Вечтомов С. Г. Как читается генетический код: правила и исключения // Современное естествознание. М., 2000. Т. 8; Ратнер В. А. Генетический код как система // Соросовский образовательный журнал. 2000. Т. 6. № 3.

С. Г. Инге-Вечтомов.

В любой клетке и организме все особенности анатомического, морфологического и функционального характера определяются структурой белков, которые входят в них. Наследственным свойством организма является способность к синтезу определенных белков. В аминокислоты расположены в полипептидной цепочке, от которой зависят биологические признаки.
Для каждой клетки характерна своя последовательность нуклеотидов в полинуклеотидной цепи ДНК. Это и есть генетический код ДНК. Посредством его записывается информация о синтезе тех или иных белков. О том, что такое генетический код, о его свойствах и генетической информации рассказывается в этой статье.

Немного истории

Идея о том, что, возможно, генетический код существует, была сформулирована Дж.Гамовым и А.Дауном в середине двадцатого столетия. Они описали, что последовательность нуклеотидов, отвечающая за синтез определенной аминокислоты, содержит по меньшей мере три звена. Позже доказали точное количество из трех нуклеотидов (это единица генетического кода), которое назвали триплет или кодон. Всего нуклеотидов насчитывается шестьдесят четыре, потому что молекулы кислот, где происходит или РНК, состоит из остатков четырех различных нуклеотидов.

Что такое генетический код

Способ кодирования последовательности белков аминокислот благодаря последовательности нуклеотидов характерен для всех живых клеток и организмов. Вот что такое генетический код.
В ДНК есть четыре нуклеотида:

  • аденин - А;
  • гуанин - Г;
  • цитозин - Ц;
  • тимин - Т.

Они обозначаются заглавными буквами латинскими или (в русскоязычной литературе) русскими.
В РНК также присутствуют четыре нуклеотида, однако один из них отличается от ДНК:

  • аденин - А;
  • гуанин - Г;
  • цитозин - Ц;
  • урацил - У.

Все нуклеотиды выстраиваются в цепочки, причем в ДНК получается двойная спираль, а в РНК — одинарная.
Белки строятся на двадцати аминокислотах, где они, расположенные в определенной последовательности, определяют его биологические свойства.

Свойства генетического кода

Триплетность. Единица генетического кода состоит из трех букв, он триплетен. Это означает, что двадцать существующих аминокислот зашифрованы тремя определенными нуклеотидами, которые называются кодонами или трилпетами. Существуют шестьдесят четыре комбинации, которые можно создать из четырех нуклеотидов. Этого количества более чем достаточно для того, чтобы закодировать двадцать аминокислот.
Вырожденность. Каждая аминокислота соответствует более чем одному кодону, за исключением метионина и триптофана.
Однозначность. Один кодон шифрует одну аминокислоту. Например, в гене здорового человека с информацией о бета-цели гемоглобина триплет ГАГ и ГАА кодирует А у всех, кто болен серповидноклеточной анемией, один нуклеотид заменен.
Коллинеарность. Последовательность аминокислот всегда соответствует последовательности нуклеотидов, которую содержит ген.
Генетический код непрерывен и компактен, что означает то, что он не имеет «знаков препинания». То есть, начинаясь на определенном кодоне, идет непрерывное считывание. К примеру, АУГГУГЦУУААУГУГ будет считываться как: АУГ, ГУГ, ЦУУ, ААУ, ГУГ. Но никак не АУГ, УГГ и так далее или как-то еще иначе.
Универсальность. Он един абсолютно для всех земных организмов, от людей до рыб, грибов и бактерий.

Таблица

В представленной таблице присутствуют не все имеющиеся аминокислоты. Гидроксипролин, гидроксилизин, фосфосерин, иодопроизводных тирозина, цистин и некоторые другие отсутствуют, так как они являются производными других аминокислот, кодирующихся м-РНК и образующихся после модификации белков в результате трансляции.
Из свойств генетического кода известно, что один кодон способен кодировать одну аминокислоту. Исключением является выполняющий дополнительные функции и кодирующий валин и метионин, генетический код. ИРНК, находясь в начале с кодоном, присоединяет т-РНК, которая несет формилметион. По завершении синтеза он отщепляется сам и захватывает за собой формильный остаток, преобразуясь в остаток метионина. Так, вышеупомянутые кодоны являются инициаторами синтеза цепи полипептидов. Если же они находятся не в начале, то ничем не отличаются от других.

Генетическая информация

Под этим понятием подразумевается программа свойств, которая передается от предков. Она заложена в наследственности как генетический код.
Реализуется при синтезе белка генетический код :

  • информационной и-РНК;
  • рибосомальной р-РНК.

Информация передается прямой связью (ДНК-РНК-белок) и обратной (среда-белок-ДНК).
Организмы могут получать, сохранять, передавать ее и использовать при этом наиболее эффективно.
Передаваясь по наследству, информация определяет развитие того или иного организма. Но из-за взаимодействия с окружающей средой реакция последнего искажается, благодаря чему и происходит эволюция и развитие. Таким образом в организм закладывается новая информация.


Вычисление закономерностей молекулярной биологии и открытие генетического кода проиллюстрировали то, что необходимо соединить генетику с теорией Дарвина, на основе чего появилась синтетическая теория эволюции — неклассическая биология.
Наследственность, изменчивость и естественный отбор Дарвина дополняются генетически определяемым отбором. Эволюция реализуется на генетическом уровне путем случайных мутаций и наследованием самых ценных признаков, которые наиболее адаптированы к окружающей среде.

Расшифровка кода у человека

В девяностых годах был начат проект Human Genome, в результате чего в двухтысячных были открыты фрагменты генома, содержащие 99,99% генов человека. Неизвестными остались фрагменты, которые не участвуют в синтезе белков и не кодируются. Их роль пока остается неизвестной.

Последняя открытая в 2006 году хромосома 1 является самой длинной в геноме. Более трехсот пятидесяти заболеваний, в том числе рак, появляются в результате нарушений и мутаций в ней.

Роль подобных исследований трудно переоценить. Когда открыли, что такое генетический код, стало известно, по каким закономерностям происходит развитие, как формируется морфологическое строение, психика, предрасположенность к тем или иным заболеваниям, обмен веществ и пороки индивидов.

Генетический код разных организмов обладает некоторыми общими свойствами:
1) Триплетность. Для записи любой, в том числе и наследственной информации используется определенный шифр, элементом которого является буква, или символ. Совокупность таких символов составляет алфавит. Отдельные сообщения записываются комбинацией символов, которые называются кодовыми группами, или кодонами. Известен алфавит, состоящий всего из двух символов, - это азбука Морзе. В ДНК 4 буквы – первые буквы названий азотистых оснований (А, Г, Т, Ц), значит, генетический алфавит состоит всего из 4 символов. Что же является кодовой группой, или, словом генетического кода? Известно 20 основных аминокислот, содержание которых должно быть записано генетическим кодом, т. е. 4 буквы должны дать 20 кодовых слов. Допустим, слово состоит из одного символа, тогда мы получим только 4 кодовые группы. Если же слово состоит из двух символов, то таких групп будет только 16, а этого явно мало, чтобы закодировать 20 аминокислот. Следовательно, в кодовом слове должно быть минимум 3 нуклеотида, что даст 64 (43) сочетания. Такого количества триплетных сочетаний вполне достаточно для кодирования всех аминокислот. Таким образом, кодон генетического кода – это триплет нуклеотидов.
2) Вырожденность (избыточность) – свойство генетического кода состоящее с одной стороны, в том, что он содержит избыточные триплеты, т. е. синонимы, а с другой – «бессмысленные» триплеты. Поскольку код включает 64 сочетания, а кодируются только 20 аминокислот, то некоторые аминокислоты кодируются несколькими триплетами (аргинин, серин, лейцин – шестью; валин, пролин, аланин, глицин, треонин – четырьмя; изолейцин – тремя; фенилаланин, тирозин, гистидин, лизин, аспарагин, глутамин, цистеин, аспарагиновая и глутаминовая кислоты – двумя; метионин и триптофан – одним триплетом). Некоторые кодовые группы (УАА, УАГ, УГА) вообще не несут смысловой нагрузки, т. е. являются «бессмысленными» триплетами. «Бессмысленные», или nonsense, кодоны выполняют функцию терминаторов цепей – знаков препинания в генетическом тексте – служат сигналом окончания синтеза белковой цепи. Такая избыточность кода имеет большое значение для повышения надежности передачи генетической информации.
3) Неперекрываемость. Кодовые триплеты никогда не перекрываются, т. е. всегда транслируются вместе. При считывании информации с молекулы ДНК невозможно использование азотистого основания одного триплета в комбинации с основаниями другого триплета.
4) Однозначность. Нет случаев, когда один и тот же триплет соответствовал бы более чем одной кислоте.
5) Отсутствие разделительных знаков внутри гена. Генетический код считывается с определенного места без запятых.
6) Универсальность. У различных видов живых организмов (вирусов, бактерий, растений, грибов и животных) одинаковые триплеты кодируют одни и те же аминокислоты.
7) Видовая специфичность. Количество и последовательность азотистых оснований в цепи ДНК у разных организмов различные.

Выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.

Генетический код

Белки практически всех живых организмов построены из аминокислот всего 20 видов. Эти аминокислоты называют каноническими. Каждый белок представляет собой цепочку или несколько цепочек аминокислот, соединённых в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства.

C

CUU (Leu/L)Лейцин
CUC (Leu/L)Лейцин
CUA (Leu/L)Лейцин
CUG (Leu/L)Лейцин

В некоторых белках нестандартные аминокислоты, такие как селеноцистеин и пирролизин , вставляются рибосомой, прочитывающей стоп-кодон, что зависит от последовательностей в мРНК . Селеноцистеин сейчас рассматривается в качестве 21-й, а пирролизин 22-й аминокислот, входящих в состав белков.

Несмотря на эти исключения, у всех живых организмов генетический код имеет общие черты: кодон состоят из трёх нуклеотидов, где два первых являются определяющими, кодоны транслируются тРНК и рибосомами в последовательность аминокислот.

Отклонения от стандартного генетического кода .
Пример Кодон Обычное значение Читается как:
Некоторые виды дрожжей рода Candida CUG Лейцин Серин
Митохондрии, в частности у Saccharomyces cerevisiae CU(U, C, A, G) Лейцин Серин
Митохондрии высших растений CGG Аргинин Триптофан
Митохондрии (у всех без исключения исследованных организмов) UGA Стоп Триптофан
Митохондирии млекопитающих, дрозофилы , S. cerevisiae и многих простейших AUA Изолейцин Метионин = Старт
Прокариоты GUG Валин Старт
Эукариоты (редко) CUG Лейцин Старт
Эукариоты (редко) GUG Валин Старт
Прокариоты (редко) UUG Лейцин Старт
Эукариоты (редко) ACG Треонин Старт
Митохондрии млекопитающих AGC, AGU Серин Стоп
Митохондрии дрозофилы AGA Аргинин Стоп
Митохондрии млекопитающих AG(A, G) Аргинин Стоп

История представлений о генетическом коде

Тем не менее в начале 60-х годов XX века новые данные обнаружили несостоятельность гипотезы «кода без запятых». Тогда эксперименты показали, что кодоны, считавшиеся Криком бессмысленными, могут провоцировать белковый синтез в пробирке, и к 1965 году был установлен смысл всех 64 триплетов. Оказалось, что некоторые кодоны просто-напросто избыточны, то есть целый ряд аминокислот кодируется двумя, четырьмя или даже шестью триплетами.

См. также

Примечания

  1. Genetic code supports targeted insertion of two amino acids by one codon. Turanov AA, Lobanov AV, Fomenko DE, Morrison HG, Sogin ML, Klobutcher LA, Hatfield DL, Gladyshev VN. Science. 2009 Jan 9;323(5911):259-61.
  2. Кодон AUG кодирует метионин, но одновременно служит стартовым кодоном - с первого AUG-кодона мРНК как правило начинается трансляция.
  3. NCBI: «The Genetic Codes», Compiled by Andrzej (Anjay) Elzanowski and Jim Ostell
  4. Jukes TH, Osawa S, The genetic code in mitochondria and chloroplasts. , Experientia. 1990 Dec 1;46(11-12):1117-26.
  5. Osawa S, Jukes TH, Watanabe K, Muto A (March 1992). «Recent evidence for evolution of the genetic code ». Microbiol. Rev. 56 (1): 229–64. PMID 1579111 .
  6. SANGER F. (1952). «The arrangement of amino acids in proteins.». Adv Protein Chem. 7 : 1-67. PMID 14933251 .
  7. М. Ичас Биологический код. - Мир, 1971.
  8. WATSON JD, CRICK FH. (April 1953). «Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid.». Nature 171 : 737-738. PMID 13054692 .
  9. WATSON JD, CRICK FH. (May 1953). «Genetical implications of the structure of deoxyribonucleic acid.». Nature 171 : 964-967. PMID 13063483 .
  10. Crick FH. (April 1966). «The genetic code - yesterday, today, and tomorrow.». Cold Spring Harb Symp Quant Biol. : 1-9. PMID 5237190 .
  11. G. GAMOW (February 1954). «Possible Relation between Deoxyribonucleic Acid and Protein Structures.». Nature 173 : 318. DOI :10.1038/173318a0 . PMID 13882203 .
  12. GAMOW G, RICH A, YCAS M. (1956). «The problem of information transfer from the nucleic acids to proteins.». Adv Biol Med Phys. 4 : 23-68. PMID 13354508 .
  13. Gamow G, Ycas M. (1955). «STATISTICAL CORRELATION OF PROTEIN AND RIBONUCLEIC ACID COMPOSITION. ». Proc Natl Acad Sci U S A. 41 : 1011-1019. PMID 16589789 .
  14. Crick FH, Griffith JS, Orgel LE. (1957). «CODES WITHOUT COMMAS. ». Proc Natl Acad Sci U S A. 43 : 416-421. PMID 16590032 .
  15. Hayes B. (1998). «The Invention of the Genetic Code.» (PDF reprint). American Scientist 86 : 8-14.

Литература

  • Азимов А. Генетический код. От теории эволюции до расшифровки ДНК. - М.: Центрполиграф, 2006. - 208 с - ISBN 5-9524-2230-6 .
  • Ратнер В. А.Генетический код как система - Соросовский образовательный журнал, 2000, 6, № 3, с.17-22.
  • Crick FH, Barnett L, Brenner S, Watts-Tobin RJ. General nature of the genetic code for proteins - Nature, 1961 (192), pp. 1227-32

Ссылки

  • Генетический код - статья из Большой советской энциклопедии

Wikimedia Foundation . 2010 .